- 53
- 42
- 21
- 16
- 11
- 7
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
Christian Robert
166
Documents
Presentation
Publications
- 8
- 6
- 6
- 5
- 4
- 3
- 3
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 17
- 10
- 6
- 5
- 5
- 4
- 4
- 4
- 3
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 4
- 1
- 4
- 4
- 3
- 23
- 6
- 12
- 6
- 7
- 10
- 5
- 14
- 17
- 14
- 19
- 10
- 1
- 3
- 1
- 1
- 1
- 34
- 10
- 8
- 8
- 7
- 6
- 6
- 5
- 5
- 5
- 5
- 4
- 4
- 4
- 4
- 4
- 4
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
|
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform35th International Conference on Neural Information Processing Systems, Dec 2021, Online, France. ⟨10.5555/3540261.3541565⟩
Conference papers
hal-03168489v2
|
Approximate Bayesian Computation using Random ForestValidating and Expanding Approximate Bayesian Computation Methods (17w5025), Banff International Research Station for Mathematical Innovation and Discovery (BIRS). MEX., Feb 2017, Banff, Canada
Conference papers
hal-02786888v1
|
|
Jeffreys’ Priors for Mixture EstimationBayesian Statistics from Methods to Models and Applications / BAYSM 2014, Sep 2014, Vienna, Austria. pp.37-48, ⟨10.1007/978-3-319-16238-6_4⟩
Conference papers
hal-01276489v1
|
|
Empirical likelihood for Bayesian inference in population geneticsMathematical and Computational Evolutionnary Biology 2012, Jun 2012, Montpellier, France
Conference papers
hal-02932407v1
|
|
|
Modélisation bayésienne hiérarchique pour l'estimation de matrice de covariance - Application à la gestion actif-passif de portefeuilles financiers42èmes Journées de Statistique, 2010, Marseille, France, France
Conference papers
inria-00494745v1
|
|
Optimisation de plans d'expérience par méthodes particulaires35. Journées de Statistiques, Jun 2003, Lyon, France. pp.97-100
Conference papers
ineris-00972424v1
|
Handbook of Mixture AnalysisTaylor & Francis, 2019
Books
hal-03943314v1
|
|
Handbook of Mixture AnalysisCRC Press, pp.1-536, 2018, Chapman & Hall/CRC Handbooks of Modern Statistical Methods, 9781498763813
Books
hal-01928103v1
|
|
Bayesian essentials with RSpringer Verlag, New York, pp.XIV-296, 2014, Springer Textbooks in Statistics, 978-1-4614-8686-2
Books
hal-01337395v1
|
|
Introducing Monte Carlo Methods with RRobert Gentleman. Springer Verlag, New York, pp.284, 2009, Use R, John Kimmel, ⟨10.1007/1441915753⟩
Books
hal-00450502v1
|
|
Bayesian Core: A practical approach to computational Bayesian statisticsSpringer Verlag, New York, pp.258, 2007, Springer Textbooks in Statistics, ⟨10.1007/978-0-387-38983-7⟩
Books
hal-00450489v1
|
Approximate Bayesian computation, an introductionJean-Baptiste Marquette Didier Fraix‐Burnet Stéphane Girard and Julyan Arbel. Statistics for Astrophysics, EDP Sciences, pp.77-112, 2021, 978-2-7598-2275-1. ⟨10.1051/978-2-7598-2275-1.c008⟩
Book sections
hal-03912165v1
|
|
A Bayesian Generalized Poisson Model for Cyber Risk AnalysisMathematical and Statistical Methods for Actuarial Sciences and Finance, Springer International Publishing; Springer International Publishing, pp.123-128, 2021, ⟨10.1007/978-3-030-78965-7_19⟩
Book sections
hal-03523624v1
|
|
Markov Chain Monte Carlo Algorithms for Bayesian Computation, a Survey and Some GeneralisationCase Studies in Applied Bayesian Data Science, 2259, Springer International Publishing, pp.89-119, 2020, Lecture Notes in Mathematics, ⟨10.1007/978-3-030-42553-1_4⟩
Book sections
hal-03912194v1
|
|
Application of ABC to Infer the Genetic History of Pygmy Hunter-Gatherer Populations from Western Central AfricaScott A. Sisson; Yanan Fan; Mark A. Beaumont. Handbook of Approximate Bayesian Computation, Chapman and Hall, Chapter 18, 2019, Chapman & Hall/CRC Handbooks of Modern Statistical Methods, 9781439881507
Book sections
hal-02787321v1
|
|
Computational Solutions for Bayesian Inference in Mixture ModelsHandbook of Mixture Analysis, CRC Press, 2018
Book sections
hal-01961038v1
|
|
|
Model Selection for Mixture Models-Perspectives and StrategiesHandbook of Mixture Analysis, CRC Press, 2018
Book sections
hal-01961077v1
|
Approximate Bayesian Computation: A Survey on Recent ResultsRonald Cools; Dirk Nuyens. Monte Carlo and Quasi-Monte Carlo Methods, Springer International Publishing, pp.185-205, 2016, 978-3-319-33505-6. ⟨10.1007/978-3-319-33507-0_7⟩
Book sections
hal-01409281v1
|
|
Bayesian Inference and computationD. Balding, M. Stumpf, M. Girolami. Handbook of Statistical Systems Biology, John Wiley, pp.39-65, 2011, 978-0-470-71086-9
Book sections
hal-00473021v1
|
|
Importance sampling methods for Bayesian discrimination between embedded modelsM.-H. Chen, D. Dey, P. Mueller, D. Sun and K. Ye. Frontiers of Statistical Decision Making and Bayesian Analysis, Springer-Verlag, New York, pp.513-527, 2010
Book sections
hal-00424475v1
|