
Enrico Tassi
Présentation
I'm a researcher at Inria in the Marelle team.
I'm interested in the technology of formal proofs, in particular in
type theory, its implementation and its use to model mathematics.
I defended my Ph.D. at the university of Bologna in 2008, where
I worked on the design and implementation of the
Matita interactive theorem prover.
Then I worked for the Mathematical Components team on the
formalization of the Odd Order theorem. I'm currently maintaining the
small scale reflection Coq extension used in that project.
In the past I've also worked on on the Paral-ITP project with the
aim of making Coq scale well to large libraries of formalized mathematics, like
the Mathematical Components one.
I'm currently designing and implementing the Elpi extension language to
make it possible to improve the capabilities of software written in OCaml by
using a high level programming language. In particular Elpi gives first class
support for binders and unification variables to ease the implementation of
intricate algorithms as the one performing type inference. The
Coq-elpi plugin embeds Elpi in Coq and makes it easy to
manipulate Coq terms in Elpi for the purpose of implementing new
commands or tactics.
Publications
Publications
|
Implementing Type Theory in Higher Order Constraint Logic ProgrammingMathematical Structures in Computer Science, 2019, 29 (8), pp.1125-1150
Article dans une revue
hal-01410567
v3
|
|
CoqoonInternational Journal on Software Tools for Technology Transfer, 2017
Article dans une revue
hal-01410450
v1
|
|
Elpi: rule-based meta-languge for RocqCoqPL 2025 - The Eleventh International Workshop on Coq for Programming Languages, Jan 2025, Denver (Colorado, USA), United States
Communication dans un congrès
hal-04990628
v1
|
|
Higher-Order unification for free!PPDP 2024: 26th International Symposium on Principles and Practice of Declarative Programming, Sep 2024, Milan, Italy. pp.1-13, ⟨10.1145/3678232.3678233⟩
Communication dans un congrès
hal-04547069
v4
|
|
Practical and sound equality tests, automatically -- Deriving eqType instances for Jasmin's data types with Coq-ElpiCPP '23: 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, Jan 2023, Boston MA USA, France. pp.167-181, ⟨10.1145/3573105.3575683⟩
Communication dans un congrès
hal-03800154
v1
|
|
A new Type-Class solver for Coq in ElpiThe Coq Workshop 2023, Jul 2023, Białystok, Poland
Communication dans un congrès
hal-04467855
v1
|
|
Reliably Reproducing Machine-Checked Proofs with the Coq PlatformRRRR 2022 - Workshop on Reproducibility and Replication of Research Results, Apr 2022, Munich, Germany
Communication dans un congrès
hal-03592675
v2
|
|
Porting the Mathematical Components library to Hierarchy Builderthe COQ Workshop 2021, Jul 2021, Rome, Italy
Communication dans un congrès
hal-03463762
v1
|
|
Private types in Higher Order Logic ProgrammingTEASE-LP 2020 - Workshop on Trends, Extensions, Applications and Semantics of Logic Programming, May 2020, Virtual Event, France
Communication dans un congrès
hal-03117762
v1
|
|
Hierarchy Builder: algebraic hierarchies made easy in Coq with ElpiFSCD 2020 - 5th International Conference on Formal Structures for Computation and Deduction, Jun 2020, Paris, France. pp.34:1--34:21, ⟨10.4230/LIPIcs.FSCD.2020.34⟩
Communication dans un congrès
hal-02478907
v6
|
|
Deriving proved equality tests in Coq-elpi: Stronger induction principles for containers in CoqITP 2019 - 10th International Conference on Interactive Theorem Proving, Sep 2019, Portland, United States. ⟨10.4230/LIPIcs.CVIT.2016.23⟩
Communication dans un congrès
hal-01897468
v2
|
|
Elpi: an extension language for Coq (Metaprogramming Coq in the Elpi λProlog dialect)The Fourth International Workshop on Coq for Programming Languages, Jan 2018, Los Angeles (CA), United States
Communication dans un congrès
hal-01637063
v1
|
|
Coqoon An IDE for interactive proof development in CoqTACAS, Apr 2016, Eindhoven, Netherlands
Communication dans un congrès
hal-01242295
v1
|
|
Implementing HOL in an Higher Order Logic Programming LanguageLogical Frameworks and Meta Languages: Theory and Practice, Jun 2016, Porto, Portugal. pp.10, ⟨10.1145/2966268.2966272⟩
Communication dans un congrès
hal-01394686
v1
|
|
Boolean reflection via type classesCoq Workshop, Aug 2016, Nancy, France
Communication dans un congrès
hal-01410530
v1
|
|
Asynchronous processing of Coq documents: from the kernel up to the user interfaceProceedings of ITP, Aug 2015, Nanjing, China
Communication dans un congrès
hal-01135919
v1
|
|
ELPI: fast, Embeddable, λProlog InterpreterProceedings of LPAR, Nov 2015, Suva, Fiji
Communication dans un congrès
hal-01176856
v1
|
|
A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3)ITP - 5th International Conference on Interactive Theorem Proving, 2014, Vienna, Austria
Communication dans un congrès
hal-00984057
v1
|
|
Canonical Structures for the working Coq userITP 2013, 4th Conference on Interactive Theorem Proving, Jul 2013, Rennes, France. pp.19-34, ⟨10.1007/978-3-642-39634-2_5⟩
Communication dans un congrès
hal-00816703
v2
|
Pervasive Parallelism in Highly-Trustable Interactive Theorem Proving SystemsMKM/Calculemus/DML, Jul 2013, Bath, United Kingdom. pp.359-363
Communication dans un congrès
hal-00908980
v1
|
|
|
A Machine-Checked Proof of the Odd Order TheoremITP 2013, 4th Conference on Interactive Theorem Proving, Jul 2013, Rennes, France. pp.163-179, ⟨10.1007/978-3-642-39634-2_14⟩
Communication dans un congrès
hal-00816699
v1
|
|
A language of patterns for subterm selectionITP, Aug 2012, Princeton, United States. pp.361-376, ⟨10.1007/978-3-642-32347-8_25⟩
Communication dans un congrès
hal-00652286
v2
|
|
Determinacy Checking for Elpi: an Higher-Order Logic Programming language with Cut2025
Pré-publication, Document de travail
hal-05026472
v2
|
|
A Small Scale Reflection Extension for the Coq system[Research Report] RR-6455, Inria Saclay Ile de France. 2016
Rapport
(rapport de recherche)
inria-00258384
v17
|
Coq 8.4 Reference Manual[Research Report] Inria. 2014
Rapport
(rapport de recherche)
hal-01114602
v1
|
|
|
A Modular Formalisation of Finite Group Theory[Research Report] RR-6156, INRIA. 2007, pp.17
Rapport
(rapport de recherche)
inria-00139131
v2
|