Julyan Arbel
99
Documents
Presentation
Vous pouvez trouver en suivant les liens:
\- ma page personnelle: <http://www.julyanarbel.com/>
\- mon CV en [Anglais](https://dl.dropboxusercontent.com/u/1391912/webpage/CV_Arbel_EN.pdf) et en [Français](https://dl.dropboxusercontent.com/u/1391912/webpage/CV_Arbel_FR.pdf).
You can find:
\- my webpage: <http://www.julyanarbel.com/>
\- my CV in [English](https://dl.dropboxusercontent.com/u/1391912/webpage/CV_Arbel_EN.pdf) and in [French](https://dl.dropboxusercontent.com/u/1391912/webpage/CV_Arbel_FR.pdf).
Publications
Bayesian nonparametric mixture of experts for high-dimensional inverse problemsBNP13 - 13th International Conference on Bayesian Nonparametrics, Oct 2022, Puerto Varas, Chile
Conference papers
hal-04001270v1
|
|
On the consistency of Bayesian nonparametric mixtures for the number of clustersISBA 2022 - World Meeting International Society for Bayesian Analysis, Jun 2022, Montreal, Canada
Conference papers
hal-03866460v1
|
|
|
A local version of R-hat for MCMC convergence diagnosticSFdS 2022 - 53èmes Journées de Statistique de la Société Française de Statistique, Jun 2022, Lyon, France. pp.1-6
Conference papers
hal-03683927v1
|
|
Mixture of expert posterior surrogates for approximate Bayesian computationSFdS 2022 - 53èmes Journées de Statistique de la Société Française de Statistique, Jun 2022, Lyon, France. pp.1-6
Conference papers
hal-03679688v1
|
|
Imposing Gaussian Pre-Activations in a Neural NetworkJDS 2022 - 53es Journées de Statistique de la Société Française de Statistiques (SFdS), Jun 2022, Lyon, France
Conference papers
hal-03853790v1
|
Improving MCMC convergence diagnostic with a local version of R-hatCMStatistics 2022 - 15th International Conference of the ERCIM WG on Computational and Methodological Statistics, Dec 2022, London, United Kingdom
Conference papers
hal-03910658v1
|
|
|
Bayesian nonparametric mixtures inconsistency for the number of clusters53es journées de Statistiques, Société Française de Statistique, Jun 2022, Lyon, France
Conference papers
hal-03866522v1
|
On the use of a local R-hat to improve MCMC convergence diagnosticEnergy Forecasting Innovation Conference 2022, May 2022, Londres, United Kingdom
Conference papers
hal-03683896v1
|
|
|
Bayesian neural network unit priors and generalized Weibull-tail propertyACML 2021 - 13th Asian Conference on Machine Learning, Nov 2021, Virtual, Unknown Region. pp.1-16
Conference papers
hal-03368522v1
|
|
On Reparameterisations of the Poisson Process Model for Extremes in a Bayesian FrameworkJDS 2021 - 52èmes Journées de Statistique de la Société Française de Statistique (SFdS), Jun 2021, Nice / Virtual, France. pp.1-6
Conference papers
hal-03264261v1
|
|
Approximating the clusters' prior distribution in Bayesian nonparametric modelsAABI 2020 - 3rd Symposium on Advances in Approximate Bayesian Inference, Jan 2021, Online, United States. pp.1-16
Conference papers
hal-03151483v1
|
|
Dependence between Bayesian neural network unitsBDL 2021 - Workshop. Bayesian Deep Learning NeurIPS, Dec 2021, Montreal, Canada. pp.1-9
Conference papers
hal-03449211v1
|
|
Generalized Weibull-tail distributionsJDS 2021 - 52èmes Journées de Statistique de la Société Française de Statistique (SFdS), Jun 2021, Nice, France. pp.1-6
Conference papers
hal-03264446v1
|
A Bayesian framework for Poisson process characterization of extremes with uninformative priorCMStatistics 2021 - 14th International Conference of the ERCIM WG on Computational and Methodological Statistics, Dec 2021, London, United Kingdom
Conference papers
hal-03501794v1
|
|
Improving MCMC convergence diagnostic with a local version of R-hatMAS 2021 - Journées Modélisation Aléatoire et Statistique, Aug 2021, Orléans, France
Conference papers
hal-03337454v1
|
|
|
A Bayesian Framework for Poisson Process Characterization of Extremes with Objective PriorISBA 2021 - World Meeting of the International Society for Bayesian Analysis, Jun 2021, Virtual, France
Conference papers
hal-03347871v1
|
|
Bayesian block-diagonal graphical models via the Fiedler priorSFdS - 52 Journées de Statistique de la Société Francaise de Statistique, Jun 2021, Nice, France. pp.1-6
Conference papers
hal-03275245v1
|
Approximate Bayesian computation with surrogate posteriorsISBA 2021 - World Meeting of the International Society for Bayesian Analysis, Jun 2021, Marseille, France
Conference papers
hal-03337949v1
|
|
|
Dictionary-based Learning in MR Fingerprinting: Statistical Learning versus Deep LearningISMRM 2020 - International Society for Magnetic Resonance in Medicine, Aug 2020, Sidney, Australia. pp.1-4
Conference papers
hal-02922858v1
|
|
Estimation de paramètres IRM en grande dimension via une régression inverseSFRMBM 2020 - 4e congrés de la Société Française de Résonance Magnétique en Biologie et Médecine, Mar 2020, Strasbourg, France. pp.1
Conference papers
hal-02428679v1
|
|
Dictionary learning via regression: vascular MRI applicationCNIV 2019 - 3e Congrès National d’Imagerie du Vivant, Feb 2019, Paris, France. pp.1-12
Conference papers
hal-02428647v1
|
|
Understanding Priors in Bayesian Neural Networks at the Unit LevelICML 2019 - 36th International Conference on Machine Learning, Jun 2019, Long Beach, United States. pp.6458-6467
Conference papers
hal-02177151v1
|
|
Quantitative MRI characterization of brain abnormalities in de novo Parkinsonian patientsISBI 2019 - IEEE International Symposium on Biomedical Imaging, Apr 2019, Venice, Italy. pp.1-4, ⟨10.1109/ISBI.2019.8759544⟩
Conference papers
hal-01970682v2
|
Dependence properties and Bayesian inference for asymmetric multivariate copulasCMStatistics 2019 - 12th International Conference of the ERCIM WG on Computational and Methodological Statistics, Dec 2019, London, United Kingdom
Conference papers
hal-02413948v1
|
|
|
Dictionary-Free MR Fingerprinting Parameter Estimation Via Inverse RegressionJoint Annual Meeting ISMRM-ESMRMB 2018, Jun 2018, Paris, France. pp.1-2
Conference papers
hal-01941630v1
|
|
Non parametric Bayesian priors for hidden Markov random fieldsJSM 2018 - Joint Statistical Meeting, Jul 2018, Vancouver, Canada. pp.1-38
Conference papers
hal-01941679v1
|
A Bayesian Nonparametric Approach to Ecological Risk AssessmentSMPGD 2018 - Workshop on Statistical Methods for Post Genomic Data, Jan 2018, Montpellier, France
Conference papers
hal-01950669v1
|
|
|
Bayesian Nonparametric Priors for Hidden Markov Random Fields50e Journées de la Statistique de la SFdS, May 2018, Saclay, France. pp.1-5
Conference papers
hal-01941638v1
|
Non parametric Bayesian priors for hidden Markov random fields: application to image segmentationBNPSI 2018 : Workshop on Bayesian non parametrics for signal and image processing, Jul 2018, Bordeaux, France
Conference papers
hal-01941687v1
|
|
|
Bayesian neural networks become heavier-tailed with depthNeurIPS 2018 - Thirty-second Conference on Neural Information Processing Systems, Dec 2018, Montréal, Canada. pp.1-7
Conference papers
hal-01950658v1
|
Introduction to Bayesian nonparametric statisticsSéminaire de Statistique au sommet de Rochebrune, Mar 2018, Megève, France
Conference papers
hal-01950668v1
|
|
Some distributional properties of Bayesian neural networksWorkshop on Bayesian nonparametrics, Jul 2018, Bordeaux, France
Conference papers
hal-01950667v1
|
|
|
Bayesian neural network priors at the level of unitsAABI 2018 - 1st Symposium on Advances in Approximate Bayesian Inference, Dec 2018, Montréal, Canada. pp.1-6
Conference papers
hal-01950659v1
|
Investigating predictive probabilities of Gibbs-type priorsMathematical Methods of Modern Statistics, Jul 2017, Marseille, France
Conference papers
hal-01667765v1
|
|
Bayesian nonparametric clusteringSchool of Statistics for Astrophysics: Bayesian methodology, Oct 2017, Autrans, France
Conference papers
hal-01667760v1
|
|
|
Les écoles d'astrostatistique " Statistics for Astrophysics "CFIES 2017 - 5ème Colloque Francophone International sur l’Enseignement de la Statistique, Sep 2017, Grenoble, France
Conference papers
hal-01583854v1
|
Bayesian nonparametric inference for discovery probabilitiesYES VIII Workshop on Uncertainty Quantification, Jan 2017, Eindhoven, Netherlands
Conference papers
hal-01667794v1
|
|
Approximating predictive probabilities of Gibbs-type priorsERCIM - 10th International Conference of the ERCIM WG on Computational and Methodological Statistics, Dec 2017, London, United Kingdom
Conference papers
hal-01667746v1
|
|
Bayesian nonparametric mixture models and clusteringWorkshop 'New challenges in statistics for social sciences', Oct 2017, Venise, Italy
Conference papers
hal-01667755v1
|
|
Probabilités de découverte d'espèces: Bayes à la rescousse de Good & TuringJournées Scientifiques d'Inria, Jun 2017, Sophia Antipolis, France
Conference papers
hal-01667788v1
|
|
Truncation error of a superposed gamma process in a decreasing order representationNIPS Meeting, Dec 2016, Barcelone, Spain
Conference papers
hal-01667804v1
|
|
|
Sequential Quasi Monte Carlo for Dirichlet Process Mixture ModelsNIPS - Conference on Neural Information Processing Systems, Dec 2016, Barcelone, Spain
Conference papers
hal-01405568v1
|
|
On diversity under a Bayesian nonparametric dependent modelXLVII Meeting of the Italian Statistical Society, Italian Statistical Society, Jun 2014, Cagliari, Italy
Conference papers
hal-01203340v1
|
|
Bayesian mixture models (in)consistency for the number of clustersConference poster hal-03866441v1 |
|
Improving MCMC convergence diagnostic: a local version of R-hatBayesComp-ISBA workshop: Measuring the quality of MCMC output, Oct 2021, online, France
Conference poster
hal-03372736v1
|
Bayesian Nonparametric Priors for Graph Structured Data: Application to Image SegmentationBayes Comp 2020, Jan 2020, Gainesville, United States
Conference poster
hal-02423642v1
|
|
|
Bayesian neural network priors at the level of unitsBayesian Statistics in the Big Data Era, Nov 2018, Marseille, France. pp.1
Conference poster
hal-01950660v1
|
|
Chinese restaurant process from stick-breaking for Pitman-YorBayesian learning theory for complex data modelling Workshop, Sep 2018, Grenoble, France. pp.1
Conference poster
hal-01950662v1
|
|
DATASAFE: understanding Data Accidents for TrAffic SAFEty AcknowledgmentsBayesian learning theory for complex data modelling Workshop, Sep 2018, Grenoble, France. pp.1
Conference poster
hal-01950663v1
|
|
Bayesian Nonparametric Mixtures Why and How?IFSS 2018 - 2nd Italian-French Statistics Seminar, Sep 2018, Grenoble, France
Conference poster
hal-01950664v1
|
|
Bayesian Nonparametric Priors for Hidden Markov Random Fields: Application to Image SegmentationIFSS 2018 - 2nd Italian-French Statistics Seminar, Sep 2018, Grenoble, France. pp.1
Conference poster
hal-01950666v1
|
|
Beta and Dirichlet sub-GaussianityBayesian learning theory for complex data modelling Workshop, Sep 2018, Grenoble, France
Conference poster
hal-01950665v1
|
|
Unsupervised classification in high dimensionConference poster hal-01569733v1 |
|
Sequential Quasi Monte Carlo for Dirichlet Process Mixture ModelsConference poster hal-01667781v1 |
|
Applications in IndustrySylvia Fruhwirth-Schnatter; Gilles Celeux; Christian P. Robert. Handbook of mixture analysis, CRC press, pp.1-21, 2019, 9781498763813
Book sections
hal-01963798v1
|
|
Clustering Milky Way's Globulars: a Bayesian Nonparametric ApproachStatistics for Astrophysics: Bayesian Methodology, pp.113-137, 2018
Book sections
hal-01950656v1
|
|
A Bayesian nonparametric approach to ecological risk assessmentArgiento, R.; Lanzarone, E.; Antoniano Villalobos, I.; Mattei, A. Bayesian Statistics in Action, 194, , pp.151--159, 2017, Bayesian Statistics in Action
Book sections
hal-01405593v1
|
|
Truncation error of a superposed gamma process in a decreasing order representationArgiento, R.; Lanzarone, E.; Antoniano Villalobos, I.; Mattei, A. Bayesian Statistics in Action, 194, , pp.11--19, 2017, Bayesian Statistics in Action
Book sections
hal-01405580v1
|
|
Bayesian Survival Model based on Moment CharacterizationSylvia Frühwirth-Schnatter, Angela Bitto, Gregor Kastner, Alexandra Posekany. Bayesian Statistics from Methods to Models and Applications, 126, , pp.3-14, 2015, Springer Proceedings in Mathematics & Statistics, 978-3-319-16238-6. ⟨10.1007/978-3-319-16238-6_1⟩
Book sections
hal-01203321v1
|
Statistics for Astrophysics: Bayesian Methodology2018
Other publications
hal-01952759v1
|
|
Contributions to Bayesian nonparametric statisticGeneral Mathematics [math.GM]. Université Paris Dauphine - Paris IX, 2013. English. ⟨NNT : 2013PA090066⟩
Theses
tel-01067718v1
|
|
Bayesian Statistical Learning and ApplicationsMethodology [stat.ME]. Université grenoble Alpes, CNRS, Institut des Géosciences et de l'Environnement, 2019
Habilitation à diriger des recherches
tel-02429156v1
|