Nicolas Audebert
40
Documents
Presentation
I am an associate professor in computer science at the *Conservatoire national des arts et métiers* (Cnam) in Paris, France. My research focuses on deep representation learning for images and signals, with an applicative taste for remote sensing and Earth Observation. I also dabble in machine learning for games and other applications that look fun and challenging.
I hold a PhD in Computer Science from the University of South Brittany (France), prepared jointly between [ONERA](http://www.onera.fr) and [IRISA](http://www.irisa.fr), supervised by [Sébastien Lefèvre](http://people.irisa.fr/Sebastien.Lefevre/) and [Bertrand Le Saux](http://www.onera.fr/en/staff/bertrand-le-saux), focused on deep multi-modal learning for automated mapping from aerial and satellite images.
Take a look at my [personal website](https://nicolas.audebert.at) for more information.
Je suis maître de conférences en informatique au Conservatoire national des arts et métiers (Cnam) à Paris. Mes recherches portent sur l'apprentissage de représentations pour les images et les signaux, avec un penchant pour les applications en télédétection et observation de la Terre. Je participe également à des projets variés qui me semblent intéressants, comme le mélange des jeux vidéo et du machine learning.
J'ai un doctorat en informatique de l'université de Bretagne-Sud, préparé conjointement entre l'ONERA (Palaiseau) et l'IRISA (Vannes). Ma thèse, dirigée par Sébastien Lefèvre et Bertrand Le Saux, portait sur l'apprentissage profond multi-modal pour la cartographie automatisée de grands volumes d'images aériennes ou satellitaires.
Voir mon [site personnel](https://nicolas.audebert.at) pour plus d'informations.
Publications
- 17
- 16
- 7
- 5
- 4
- 4
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 18
- 16
- 15
- 11
- 7
- 5
- 5
- 1
- 1
- 1
- 1
- 1
|
Detecting Out-Of-Distribution Earth Observation Images with Diffusion ModelsEARTHVISION 2024 IEEE/CVF CVPR Workshop. Large Scale Computer Vision for Remote Sensing Imagery, Jun 2024, Seattle, United States
Conference papers
hal-04551408v1
|
|
Cross-sensor super-resolution of irregularly sampled Sentinel-2 time seriesEARTHVISION 2024 IEEE/CVF CVPR Workshop. Large Scale Computer Vision for Remote Sensing Imagery, Jun 2024, Seattle, United States
Conference papers
hal-04552850v1
|
|
GalLoP: Learning Global and Local Prompts for Vision-Language ModelsThe 18th European Conference on Computer Vision ECCV 2024, Sep 2024, Milan, Italy. ⟨10.48550/arXiv.2407.01400⟩
Conference papers
hal-04635800v1
|
|
Semantic Generative Augmentations for Few-Shot CountingIEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Jan 2024, Waikoloa, Hawaii, United States
Conference papers
hal-04259058v1
|
|
Improved symbolic drum style classification with grammar-based hierarchical representationsInternational Society for Music Information Retrieval Conference 2024, Nov 2024, San Francisco, United States
Conference papers
hal-04660056v1
|
|
Wasserstein Loss for Semantic Editing in the Latent Space of GANs20th International Conference on Content-based Multimedia Indexing, Sep 2023, Orléans, France
Conference papers
hal-04036414v1
|
|
Efficient Autoprecoder-based deep learning for massive MU-MIMO Downlink under PA Non-LinearitiesIEEE Wireless Communications and Networking Conference, Apr 2022, Austin, United States
Conference papers
hal-03551457v1
|
|
Caractérisation du répertoire vocal des chimpanzés par apprentissage profondReconnaissance des Formes, Image, Apprentissage et Perception (RFIAP), Jul 2022, Vannes, France
Conference papers
hal-03678311v1
|
|
Now you see me: finding the right observation space to learn diverse behaviours by reinforcement in gamesConférence sur l'Apprentissage automatique (CAp), Jul 2022, Vannes, France
Conference papers
hal-03678280v1
|
|
Hierarchical Average Precision Training for Pertinent Image RetrievalECCV 2022, Oct 2022, Tel-Aviv, Israel
Conference papers
hal-03712933v2
|
|
Robust and Decomposable Average Precision for Image RetrievalThirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021), Dec 2021, Sydney, Australia
Conference papers
hal-03359605v3
|
|
Web Image Context Extraction with Graph Neural Networks and Sentence Embeddings on the DOM treeGEM: Graph Embedding and Mining - ECML/PKDD Workshops, Sep 2021, Bilbao, Spain. pp.258-267, ⟨10.1007/978-3-030-93736-2_20⟩
Conference papers
hal-03324009v1
|
|
PKSpell: Data-Driven Pitch Spelling and Key Signature EstimationInternational Society for Music Information Retrieval Conference (ISMIR), Nov 2021, Online, India
Conference papers
hal-03300102v1
|
|
A real-world hyperspectral image processing workflow for vegetation stress and hydrocarbon indirect detectionXXIV ISPRS Congress, Aug 2020, Nice, France. ⟨10.5194/isprs-archives-XLIII-B3-2020-395-2020⟩
Conference papers
hal-02924091v1
|
|
What Data are needed for Semantic Segmentation in Earth Observation?2019 Joint Urban Remote Sensing Event (JURSE), May 2019, Vannes, France. pp.1-4, ⟨10.1109/JURSE.2019.8809071⟩
Conference papers
hal-02343915v2
|
|
Multimodal deep networks for text and image-based document classificationConférence Nationale sur les Applications Pratiques de l'Intelligence Artificielle (APIA), Jul 2019, Toulouse, France
Conference papers
hal-02163257v1
|
|
Generative Adversarial Networks for Realistic Synthesis of Hyperspectral SamplesInternational Geoscience and Remote Sensing Symposium (IGARSS 2018), Jul 2018, Valencia, Spain. ⟨10.1109/IGARSS.2018.8518321⟩
Conference papers
hal-01809872v1
|
|
Segmentation sémantique profonde par régression sur cartes de distances signées Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP), Jun 2018, Marne-la-Vallée, France
Conference papers
hal-01809991v1
|
|
Object detection in remote sensing images with center onlyIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, Valence, Spain. ⟨10.1109/IGARSS.2018.8517860⟩
Conference papers
hal-01412086v6
|
|
Large-scale semantic classification: outcome of the first year of Inria aerial image labeling benchmarkIGARSS 2018 - IEEE International Geoscience and Remote Sensing Symposium, Jul 2018, Valencia, Spain. pp.1-4, ⟨10.1109/IGARSS.2018.8518525⟩
Conference papers
hal-01767807v1
|
|
DEEP LEARNING FOR SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGES WITH RICH SPECTRAL CONTENTIEEE International Geoscience and Remote Sensing Symposium, Jul 2017, Fort Worth, United States
Conference papers
hal-01654187v1
|
|
Joint Learning from Earth Observation and OpenStreetMap Data to Get Faster Better Semantic MapsEARTHVISION 2017 IEEE/ISPRS CVPR Workshop. Large Scale Computer Vision for Remote Sensing Imagery, Jul 2017, Honolulu, United States. ⟨10.1109/CVPRW.2017.199⟩
Conference papers
hal-01523573v1
|
|
Réseaux de neurones profonds et fusion de données pour la segmentation sémantique d'images aériennesORASIS, GREYC, 2017, Colleville-sur-Mer, France
Conference papers
hal-01672871v1
|
|
Fusion of Heterogeneous Data in Convolutional Networks for Urban Semantic Labeling (Invited Paper)Joint Urban Remote Sensing Event (JURSE), Mar 2017, Dubai, United Arab Emirates. ⟨10.1109/JURSE.2017.7924566⟩
Conference papers
hal-01438499v1
|
|
Couplage de données géographiques participatives et d'images aériennes par apprentissage profondGRETSI, 2017, Juan-les-Pins, France
Conference papers
hal-01672870v1
|
|
Deep learning for urban remote sensingJoint Urban Remote Sensing Event (JURSE), Mar 2017, Dubai, United Arab Emirates. ⟨10.1109/JURSE.2017.7924536⟩
Conference papers
hal-01672854v1
|
|
How Useful is Region-based Classification of Remote Sensing Images in a Deep Learning Framework?IEEE International Geosciences and Remote Sensing Symposium (IGARSS), Jul 2016, Beijing, China. ⟨10.1109/IGARSS.2016.7730327⟩
Conference papers
hal-01320016v1
|
|
Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep NetworksAsian Conference on Computer Vision (ACCV16), Nov 2016, Taipei, Taiwan. ⟨10.1007/978-3-319-54181-5_12⟩
Conference papers
hal-01360166v1
|
|
On the usability of deep networks for object-based image analysisInternational Conference on Geographic Object-Based Image Analysis (GEOBIA), Sep 2016, Enschede, Netherlands
Conference papers
hal-01320010v1
|
|
Cross-sensor self-supervised training and alignment for remote sensing2024
Preprints, Working Papers, ...
hal-04576064v1
|
|
Classification de données massives de télédétectionVision par ordinateur et reconnaissance de formes [cs.CV]. Université de Bretagne Sud, 2018. Français. ⟨NNT : 2018LORIS502⟩
Theses
tel-02073908v1
|