Guillaume Coulaud
Doctorant - Détection d'anomalies dans les données climatiques massives
100%
Libre accès
5
Documents
Affiliations actuelles
- Université de Montpellier (UM)
- Sciences environnementales guidées par les données (IROKO)
Identifiants chercheurs
Compétences
Time series
Anomaly detection
Deep learning
Publications
Publications
|
|
ClimBurst: A Novel Method to Detect Climatological Anomalies Over Time and SpaceGeophysical Research Letters, 2025, 52 (19), ⟨10.1029/2025gl117095⟩
Article dans une revue
hal-05379952
v1
|
|
|
ClimBurst: A Dynamic Visualization Tool to Display Climatological Anomalies over Time and SpaceCIKM 2025 - 34th ACM International Conference on Information and Knowledge Management, ACM, Nov 2025, Seoul, South Korea. pp.6629-6633, ⟨10.1145/3746252.3761466⟩
Communication dans un congrès
hal-05379898
v1
|
|
|
Investigations on Physics-Informed Neural Networks for Aerodynamics58th 3AF International Conference on Applied Aerodynamics, Mar 2024, Orleans, France, France
Communication dans un congrès
hal-04519693
v1
|
|
|
Leveraging Data Seasonality and Matrix Profile for Anomaly Detection: Application to Climate Time SeriesRR-9572, Inria. 2025
Rapport
(rapport de recherche)
hal-04906596
v1
|
|
|
Physics-Informed Neural Networks for Multiphysics Coupling: Application to Conjugate Heat TransferRR-9520, Université Côte d'Azur, Inria, CNRS, LJAD. 2023
Rapport
hal-04225990
v1
|
Chargement...
Chargement...