- 19
- 17
- 7
- 4
- 3
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
Jean-Baptiste FERET
Researcher in remote sensing of vegetation
62
Documents
Current affiliations
- 1002492
Researcher identifiers
- jean-baptiste-feret
- ResearcherId : A-8351-2013
- 0000-0002-0151-1334
- Google Scholar : https://scholar.google.fr/citations?user=LVmWs2Ay7ukC&hl=fr
- IdRef : 142977594
- ResearcherId : http://www.researcherid.com/rid/A-8351-2013
Web site
- https://jbferet.gitlab.io/
Presentation
I am a Research Associate in remote sensing of vegetation at INRAE as a permanent member of the [TETIS](https://www.umr-tetis.fr/index.php/fr/) laboratory based in Montpellier (south of France). My lab is hosted at the Maison de la Teledetection.
Prior to joining INRAE, I worked as a Postdoctoral Research Associate for the Carnegie Institution for Science at the department of Global Ecology in the Asner lab (Stanford, USA). I hold a PhD in Environmental Sciences, and an eninering degree in agronomy from Montpellier Supagro.
My research focuses on remote sensing data processing and analysis, and methodological development for applications in ecology and environmental monitoring, and a bit of agronomy. I am interested in developing new methods contributing to the estimation of different components of biodiversity (see EBVs), and for the estimation of vegetation biophysical properties. These methodological developments involve imaging spectroscopy, multispectral images and time series, LiDAR data and various optical data acquired from leaf scale (field spectroscopy, close-range imaging spectroscopy) to satellite platforms.
My research is based on two types of approaches :
- Physically-based approaches using radiative transfer modeling ([PROSPECT](https://jbferet.gitlab.io/prospect/), [SAIL](https://jbferet.gitlab.io/prosail/), DART) to help understand and interpret interactions between terrestrial ecosystems and remotely sensed radiometric signal.
- Data-driven approaches (including machine learning), in order to develop methodologies for classification / regression tasks, and for the estimation of ecological metrics (with a particular interest for tropical biodiversity) and biophysical properties of vegetation, taking advantage of spatial information and high-dimensionality data (spectrally and temporally).
I am particularly interested in exploring the complementarity between these two approaches.
Research domains
Signal and Image Processing
Biodiversity and Ecology
Skills
Remote sensing of vegetation
Radiative transfer modeling
Biodiversity mapping
Vegetation biophysical properties
Publications
- 11
- 5
- 5
- 4
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 44
- 2
- 9
- 1
- 3
- 2
- 1
- 19
- 6
- 2
- 2
- 2
- 1
- 1
- 1
- 1
Applications in remote sensing—natural landscapesHyperspectral Imaging, 32, Elsevier Ltd, pp.371-410, 2020, Data Handling in Science and Technology, ISBN 978-0-444-63977-6. ⟨10.1016/B978-0-444-63977-6.00016-X⟩
Book sections
hal-02477896v1
|
|
Fusion of hyperspectral imaging and LiDAR for forest monitoringHyperspectral Imaging, 32, Elsevier, pp.281-303, 2020, Data Handling in Science and Technology, ISBN 978-0-444-63977-6. ⟨10.1016/B978-0-444-63977-6.00013-4⟩
Book sections
hal-02443395v1
|
|
Forest species mappingA sourcebook of methods and procedures for monitoring essential biodiversity variables in tropical forest with remote sensing [Report version UNCBD COP-13, GOFC-GOLD Land Cover Project Office], GOFC-GOLD & GEO BON, pp.164-182, 2017, ISSN 2542-6729
Book sections
hal-02607257v1
|
|
Suivi des mangroves par télédétection optique à très haute résolution spatialeNicolas Baghdadi; Mehrez Zribi. Observation des Surfaces Continentales par Télédétection III : Urbain et zones cotières, ISTE Editions, pp.263-286, 2017, 9781784051600
Book sections
hal-03170353v1
|
|
Mangrove forest dynamics using very high spatial resolution optical remote sensingNicolas Baghdadi; Mehrez Zribi. Land Surface Remote Sensing in Urban and Coastal Areas, Elsevier, pp.269-295, 2016, 9-78178-548-160-4. ⟨10.1016/B978-1-78548-160-4.50007-8⟩
Book sections
hal-02605295v1
|