- 248
- 52
- 48
- 22
- 16
- 11
- 11
- 11
- 10
- 3
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
Laurent Romary
Senior researcher at Inria -
Director for scientific information and culture
80%
Open access
458
Documents
Researcher identifiers
- laurentromary
- Arxiv : romary_l_1
- ResearcherId : A-5114-2012
- IdRef : 060702494
- 0000-0002-0756-0508
- VIAF : 282014122
- ISNI : 0000000388795444
Presentation
Président du [comité technique 37 de l'ISO](https://www.iso.org/fr/committee/48104.html) (langue et terminologie) depuis 2015
Membre de l'agence de maintenance ISO/TC 37/SC 2/MA 1 de l'ISO 639 (codes des langues)
Infrastructure européenne DARIAH, directeur général (2014-2018)
Chairman of [ISO technical committee 37](https://www.iso.org/committee/48104.html) (language et terminology) since 2015
Member of [ISO/TC 37/SC 2/MA 1](https://www.iso.org/iso-639-language-code#:~:text=Maintenance%20Agency&text=The%20maintenance%20and%20publication%20of,the%20LCA%20for%20Set%201.), the maintenance agency for ISO 639 (language codes)
DARIAH EU infrastructure, president of the Board of Directors (2014-2018)
Publications
- 26
- 13
- 12
- 11
- 8
- 7
- 7
- 6
- 6
- 6
- 5
- 5
- 5
- 5
- 5
- 5
- 5
- 5
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 31
- 22
- 21
- 17
- 15
- 14
- 14
- 14
- 13
- 13
- 12
- 11
- 11
- 11
- 9
- 9
- 9
- 9
- 9
- 8
- 8
- 7
- 7
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 5
- 5
- 5
- 5
- 5
- 5
- 5
- 5
- 5
- 5
- 5
- 5
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 6
- 5
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 16
- 11
- 15
- 15
- 21
- 22
- 26
- 18
- 12
- 12
- 18
- 13
- 14
- 3
- 17
- 6
- 2
- 4
- 10
- 6
- 31
- 20
- 16
- 17
- 21
- 16
- 10
- 15
- 8
- 8
- 10
- 8
- 4
- 6
- 1
- 5
- 1
- 12
- 7
- 4
- 3
- 3
- 2
- 1
- 1
- 19
- 4
- 3
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 167
- 135
- 61
- 60
- 36
- 34
- 32
- 17
- 21
- 8
- 7
- 6
- 5
- 4
- 4
- 3
- 3
- 1
- 1
- 1
- 1
Le DIM PAMIR et l’inter/pluridisciplinaritéL’interdisciplinarité en action : les projets et les infrastructures, MSH Paris-Saclay, Institut de l'Energie Soutenable, DIM PAMIR, May 2024, Paris, France
Conference papers
hal-04854355v1
|
|
|
Evaluating the Effectiveness of Large Language Models in Establishing Conversational GroundingEMNLP 2024 - Conference on Empirical Methods in Natural Language Processing, Association of Computational Linguistics, Nov 2024, Miami, United States. pp.9767-9781, ⟨10.18653/v1/2024.emnlp-main.545⟩
Conference papers
hal-04881738v1
|
Science ouverte et Projets numériquesRencontre annuelle du DIM PAMIR, DIM PAMIR, Dec 2024, Paris, France
Conference papers
hal-04854367v1
|
|
|
On Modelling Corpus Citations in Computational Lexical ResourcesProceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), ELDA; ICCL, May 2024, Turin, Italy. pp.12385--12394
Conference papers
hal-04535091v1
|
|
Conversational Grounding: Annotation and Analysis of Grounding Acts and Grounding UnitsLREC-COLING 2024 - The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, May 2024, Turin, Italy
Conference papers
hal-04519650v1
|
|
Automatic retro-structuration of auction sales catalogs layout and contentDH2024 - Reinvention and Responsibility, Alliance of Digital Humanities Organizations, Aug 2024, Washinghton DC, United States
Conference papers
hal-04547239v1
|
|
CamemBERT-bio: Leveraging Continual Pre-training for Cost-Effective Models on French Biomedical DataLREC-COLING 2024 - The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, May 2024, Torino, Italy
Conference papers
hal-04528508v1
|
|
An ODD Schema for a Sustainable Encoding of Catalog ObjectsTEI 2024 – Texts, Languages and Communities, Universidad del Salvador, Oct 2024, Buenos Aires, Argentina
Conference papers
hal-04754028v1
|
|
Layout Analysis Dataset with SegmOntoDH2024 - Annual conference of the Alliance of Digital Humanities Organizations, ADHO, Aug 2024, Washington DC, United States
Conference papers
hal-04513725v1
|
|
TEI Specifications for a Sustainable Management of Digitized Holocaust TestimoniesFirst Workshop on Holocaust Testimonies as Language Resources (HTRes) @LREC-COLING 2024, ELRA Language Resources Association (ELRA); International Committee on Computational Linguistics (ICCL), May 2024, Turin, Italy
Conference papers
hal-04538552v2
|
|
Translate your Own: a Post-Editing Experiment in the NLP domainThe 25th Annual Conference of the European Association for Machine Translation, European Association for Machine Translation, Jun 2024, Sheffield, United Kingdom
Conference papers
hal-04573922v1
|
|
Experimenting With Generic Recognition Systems for Kuzushiji Documents: Furigana Extraction as a Use-CaseJADH2024 - 13th Conference of Japanese Association for Digital Humanities “Leveraging AI and Digital Humanities for Sustainable Infrastructure”, JADH, Sep 2024, Tokyo, Japan
Conference papers
hal-04738212v1
|
|
DataCatalogue : rétro-structuration automatique des catalogues de venteWebinaire Culture-Inria, Ministère de la Culture, Nov 2023, Paris, France
Conference papers
hal-04360229v1
|
|
MaTOS: Traduction automatique pour la science ouverte18e Conférence en Recherche d'Information et Applications -- 16e Rencontres Jeunes Chercheurs en RI -- 30e Conférence sur le Traitement Automatique des Langues Naturelles -- 25e Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues, Jun 2023, Paris, France. pp.8-15
Conference papers
hal-04131594v1
|
|
CamemBERT-bio : Un modèle de langue français savoureux et meilleur pour la santéActes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 1 : travaux de recherche originaux -- articles longs, Jun 2023, Paris, France. pp.323-334
Conference papers
hal-04130187v1
|
Domain labelling in the Morais dictionary: bringing structure to unstructured lexicographic data24th Biennial Dictionary Society of North America Conference (DSNA), Dictionary Society of North America, May 2023, Boulder, United States
Conference papers
hal-04167622v1
|
|
|
Open science and research assessment: which agenda should the informatics community push forward?ECSS 2023 - European Computer Science Summit 2023, Informatics Europe, Oct 2023, Edinburgh, United Kingdom
Conference papers
hal-04263250v1
|
|
ISO LMF 24613-6: A Revised Syntax Semantics Module for the Lexical Markup FrameworkLDK 2023 – 4th Conference on Language, Data and Knowledge, Sep 2023, Vienne, Austria
Conference papers
hal-04117132v1
|
|
DataCatalogue : enjeux et réalisationsUn outil numérique pour interroger les catalogues de vente : le projet DataCatalogue, Oct 2022, Paris, France
Conference papers
hal-03829309v1
|
|
Towards a Cleaner Document-Oriented Multilingual Crawled CorpusThirteenth Language Resources and Evaluation Conference - LREC 2022, Jun 2022, Marseille, France
Conference papers
hal-03536361v1
|
|
NER4Archives (named entity recognition for archives) : Conception et réalisation d’un outil de détection, de classification et de résolution des entités nommées dans les instruments de recherche archivistiques encodés en XML/EAD.Atelier Culture-INRIA, Ministère de la Culture; Inria; Archives nationales, Mar 2022, Pierrefitte sur Seine, France
Conference papers
hal-03625734v1
|
|
BERTrade: Using Contextual Embeddings to Parse Old French13th Language Resources and Evaluation Conference, European Language Resources Association, Jun 2022, Marseille, France
Conference papers
hal-03736840v1
|
|
Modelling usage information in a legacy dictionary: from TEI Lex-0 to Ontolex-Lemon |