
Olivier Colliot
Olivier Colliot - Research Director at CNRS - ARAMIS Lab at the Paris Brain Institute (CNRS/Inria/Inserm/Sorbonne Universite)
291
Documents
Identifiants chercheurs
Présentation
Research Director at CNRS
Head of the ARAMIS Lab, a joint team between CNRS, Inria, Inserm and University Pierre and Marie Curie at the Paris Brain Institute (ICM), in co-direction with Stanley Durrleman.
Homepage: https://www.aramislab.fr/perso/colliot/
Email: olivier.colliot@cnrs.fr
Domaines de recherche
Intelligence artificielle [cs.AI]
Imagerie médicale
Apprentissage [cs.LG]
Traitement des images [eess.IV]
Publications
72
65
57
54
43
41
37
28
23
22
18
17
16
16
16
15
15
15
15
15
15
14
14
14
13
13
13
13
12
12
12
11
11
11
11
11
11
11
11
10
10
10
10
10
10
9
9
9
9
9
9
9
9
9
8
8
8
8
8
7
7
7
7
7
7
7
7
7
7
7
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
2
20
25
18
21
22
27
28
23
11
17
15
7
8
11
5
7
5
1
6
4
3
3
2
12
9
6
5
5
4
4
4
4
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
166
58
48
41
32
29
16
16
10
7
6
6
6
6
5
4
2
2
2
1
1
1
1
1
1
Publications
|
Comparing foundation models and nnU-Net for segmentation of primary brain lymphoma on clinical routine post-contrast T1-weighted MRISPIE Medical Imaging, SPIE, Feb 2025, San diego (Californie), United States
Communication dans un congrès
hal-04447318
v4
|
|
Detecting Brain Anomalies in Clinical Routine with the β-VAE: Feasibility Study on Age-Related White Matter HyperintensitiesMedical Imaging with Deep Learning - MIDL 2024, Jul 2024, Paris, France
Communication dans un congrès
hal-04674025
v1
|
|
Recent advances in the open-source ClinicaDL software for reproducible neuroimaging with deep learningSPIE Medical Imaging, Feb 2024, San Diego, United States. pp.519-524, ⟨10.1117/12.3006039⟩
Communication dans un congrès
hal-04419141
v1
|
|
Clinica, an open-source software to facilitate neuroimaging studiesColloque Français d'Intelligence Artificielle en Imagerie Biomédicale (IABM), Mar 2024, Grenoble, France
Communication dans un congrès
hal-04653352
v1
|
|
Leveraging noise and contrast simulation for the automatic quality control of routine clinical T1-weighted brain MRISPIE Medical Imaging 2024: Image Processing, Feb 2024, San Diego (CA), United States. ⟨10.1117/12.3005781⟩
Communication dans un congrès
hal-04674029
v1
|
|
Confidence intervals uncovered: Are we ready for real-world medical imaging AI?MICCAI 2024 - 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, Oct 2024, Marrakech, Morocco. pp.124-132, ⟨10.1007/978-3-031-72117-5_12⟩
Communication dans un congrès
hal-04715638
v1
|
|
The intriguing effect of frequency disentangled learning on medical image segmentationMedical Imaging 2024, Feb 2024, San Diego, CA, United States. pp.49, ⟨10.1117/12.2692286⟩
Communication dans un congrès
hal-04654627
v1
|
|
Automatic quality control of segmentation results using early epochs as data augmentation: application to choroid plexuses2024 SPIE Medical Imaging, Feb 2024, San Diego, United States. pp.44, ⟨10.1117/12.3006580⟩
Communication dans un congrès
hal-04660077
v1
|
|
Border irregularity loss for automated segmentation of primary brain lymphomas on post-contrast MRISPIE Medical Imaging 2024, Feb 2024, San Diego, CA, United States
Communication dans un congrès
hal-04454942
v1
|
|
Generating PET-derived maps of myelin content from clinical MRI using curricular discriminator training in generative adversarial networksSPIE Medical Imaging, Feb 2024, San Diego, United States. ⟨10.1117/12.3004975⟩
Communication dans un congrès
hal-04362506
v1
|
|
How precise are performance estimates for typical medical image segmentation tasks?IEEE International Symposium on Biomedical Imaging (ISBI 2023), IEEE, Apr 2023, Cartagena de Indias, Colombia
Communication dans un congrès
hal-04104891
v1
|
|
Transfer learning from synthetic to routine clinical data for motion artefact detection in brain T1-weighted MRISPIE Medical Imaging 2023: Image Processing, Feb 2023, San Diego, United States
Communication dans un congrès
hal-03831746
v2
|
|
Unsupervised anomaly detection in 3D brain FDG PET: A benchmark of 17 VAE-based approachesDeep Generative Models workshop at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023), Oct 2023, Vancouver, Canada
Communication dans un congrès
hal-04185304
v1
|
|
From Nipype to Pydra: a Clinica storyOHBM 2023 - Annual meeting of the Organization for Human Brain Mapping, Jul 2023, Montreal, Canada
Communication dans un congrès
hal-04278898
v1
|
|
Semi-supervised Domain Adaptation for Automatic Quality Control of FLAIR MRIs in a Clinical Data WarehouseDART 2023 - 5th MICCAI Workshop on Domain Adaptation and Representation Transfer, Oct 2023, Vancouver (BC), Canada. pp.84-93, ⟨10.1007/978-3-031-45857-6_9⟩
Communication dans un congrès
hal-04273997
v1
|
|
Introducing Soft Topology Constraints in Deep Learning-based Segmentation using Projected Pooling LossSPIE Medical Imaging 2023, Feb 2023, San Diego, United States
Communication dans un congrès
hal-03832309
v2
|
|
Simulation-based evaluation framework for deep learning unsupervised anomaly detection on brain FDG PETSPIE Medical Imaging, Feb 2023, San Diego, United States
Communication dans un congrès
hal-03835015
v2
|
|
How can data augmentation improve attribution maps for disease subtype explainability?SPIE Medical Imaging, Feb 2023, San Diego, United States
Communication dans un congrès
hal-03966737
v1
|
|
Interpretable automatic detection of incomplete hippocampal inversions using anatomical criteriaSPIE Medical Imaging 2023, Feb 2023, San Diego (California), United States. pp.1-7, ⟨10.1117/12.2651427⟩
Communication dans un congrès
hal-03994348
v1
|
|
Homogenization of brain MRI from a clinical data warehouse using contrast-enhanced to non-contrast-enhanced image translation with U-Net derived modelsSPIE Medical Imaging 2022: Image Processing, Feb 2022, San Diego, United States. pp.576-582, ⟨10.1117/12.2608565⟩
Communication dans un congrès
hal-03478798
v1
|
|
Advances in the Clinica software platform for clinical neuroimaging studiesOHBM 2022 - Annual meeting of the Organization for Human Brain Mapping, Jun 2022, Glasgow, United Kingdom
Communication dans un congrès
hal-03728243
v1
|
|
Axial multi-layer perceptron architecture for automatic segmentation of choroid plexus in multiple sclerosisSPIE Medical Imaging 2022, Feb 2022, San Diego, United States. ⟨10.1117/12.2612912⟩
Communication dans un congrès
hal-03343735
v1
|
|
ClinicaDL: an open-source deep learning software for reproducible neuroimaging processingOHBM 2022 - Annual meeting of the Organization for Human Brain Mapping, Jun 2022, Glasgow, United Kingdom
Communication dans un congrès
hal-04279014
v1
|
|
MRI field strength predicts Alzheimer's disease: a case example of bias in the ADNI data setISBI 2022 - International Symposium on Biomedical Imaging, Mar 2022, Kolkata, India. ⟨10.1109/ISBI52829.2022.9761504⟩
Communication dans un congrès
hal-03542213
v1
|
|
A multimodal variational autoencoder for estimating progression scores from imaging and microRNA data in rare neurodegenerative diseasesSPIE Medical Imaging 2022: Image Processing, Feb 2022, San Diego, California, United States. pp.376-382, ⟨10.1117/12.2607250⟩
Communication dans un congrès
hal-03576117
v1
|
Highlight on Computing disease progression scores using multimodal variational autoencoders trained with neuroimaging and microRNA dataJobim 2022 - Journées Ouvertes en Biologie, Informatique et Mathématiques, Jul 2022, Rennes, France
Communication dans un congrès
hal-03877191
v1
|
|
|
Clinica: an open-source software platform for reproducible clinical neuroscience studiesMRI Together 2021 - A global workshop on Open Science and Reproducible MR Research, Dec 2021, Online, France
Communication dans un congrès
hal-03513920
v1
|
|
Segmentation of new multiple sclerosis lesions on FLAIR MRI using online hard example miningMICCAI-MSSEG-2 - 25th International Conference on Medical Image Computing and Computer Assisted Intervention - challenge on multiple sclerosis new lesions segmentation challenge using a data management and processing infrastructure, Sep 2021, Strasbourg, France
Communication dans un congrès
hal-03826787
v1
|
|
Intensity based Regions Of Interest (ROIs) preselection followed by Convolutional Neuronal Network (CNN) based segmentation for new lesions detection in Multiple SclerosisMICCAI 2021 MSSEG2 - 24th International Conference on Medical Image Computing and Computer Assisted Intervention - Challenge on multiple sclerosis new lesions segmentation challenge using a data management and processing infrastructure — MICCAI-MSSEG-2, Sep 2021, Strasbourg, France
Communication dans un congrès
hal-03826791
v1
|
|
Association and prediction of phenotypic traits from neuroimaging data using a multi-component mixed model excluding the target vertexSPIE Medical Imaging 2021, Feb 2021, Virtual, United States. pp.10, ⟨10.1117/12.2581022⟩
Communication dans un congrès
hal-03174495
v1
|
|
Hierarchical modeling of Alzheimer's disease progression from a large longitudinal MRI data setVPH 2020 - Virtual Physiological Human 2020, Aug 2020, Paris / Virtual, France
Communication dans un congrès
hal-02979176
v1
|
|
A step-wise criterion to determine target control centrality in the aging brain networkNetSci 2020 - International School and Conference on Network Science, Sep 2020, Rome / Virtual, Italy
Communication dans un congrès
hal-03022301
v1
|
|
Linear Mixed Models Minimise False Positive Rate and Enhance Precision of Mass Univariate Vertex-Wise Analyse of Grey-MatterISBI 2020 - International Symposium on Biomedical Imaging, Apr 2020, Iowa City / Virtual, United States
Communication dans un congrès
hal-02477130
v1
|
|
Multilevel Survival Analysis with Structured Penalties for Imaging Genetics dataSPIE Medical Imaging Conference, Feb 2020, Houston, United States
Communication dans un congrès
hal-02473825
v1
|
|
New longitudinal and deep learning pipelines in the Clinica software platformOHBM 2020 - Annual meeting of the Organization for Human Brain Mapping, Jun 2020, Montreal / Virtual, Canada
Communication dans un congrès
hal-02549242
v1
|
|
Visualization approach to assess the robustness of neural networks for medical image classificationSPIE Medical Imaging 2020, Feb 2020, Houston, United States. ⟨10.1117/12.2548952⟩
Communication dans un congrès
hal-02370532
v3
|
|
Learning joint shape and appearance representations with metamorphic auto-encodersMICCAI 2020 - 23rd International Conference on Image Computing and Computer Assisted Interventions, Oct 2020, Lima / Virtual, Peru
Communication dans un congrès
hal-03136537
v1
|
|
Reproducible evaluation of methods for predicting progression to Alzheimer's disease from clinical and neuroimaging dataSPIE Medical Imaging 2019, Feb 2019, San Diego, United States. ⟨10.1117/12.2512430⟩
Communication dans un congrès
hal-02025880
v2
|
|
Prediction of future cognitive scores and dementia onset in Mild Cognitive Impairment patientsOHBM 2019 - Organization for Human Brain Mapping Conference, Jun 2019, Rome, Italy
Communication dans un congrès
hal-02098427
v2
|
|
Predicting Impulse Control Disorders in Parkinson's Disease: A Challenging TaskInternational Congress of Parkinson's Disease and Movement Disorders, Sep 2019, Nice, France
Communication dans un congrès
hal-02315533
v1
|
|
Hierarchical modeling of Alzheimer's disease progression from a large longitudinal MRI data setOHBM 2019 - 25th Annual Meeting of the Organization for Human Brain Mapping, Jun 2019, Roma, Italy
Communication dans un congrès
hal-02090275
v1
|
|
Conciliation of process description and molecular interaction networks using logical properties of ontologyJOBIM 2019 - Journées Ouvertes Biologie, Informatique et Mathématiques, Jul 2019, Nantes, France
Communication dans un congrès
hal-02301702
v1
|
|
Learning low-dimensional representations of shape data sets with diffeomorphic autoencodersIPMI 2019 : Information Processing in Medical Imaging, Jun 2019, Hong-Kong, China
Communication dans un congrès
hal-01963736
v2
|
|
Beware of feature selection bias! Example on Alzheimer's disease classification from diffusion MRI2019 OHBM Annual Meeting - Organization for Human Brain Mapping, Jun 2019, Rome, Italy
Communication dans un congrès
hal-02105134
v2
|
|
Deciphering the progression of PET alterations using surface-based spatiotemporal modelingOHBM 2019 - Annual meeting of the Organization for Human Brain Mapping, Jun 2019, Rome, Italy
Communication dans un congrès
hal-02134909
v1
|
|
Auto-encoding meshes of any topology with the current-splatting and exponentiation layersGeometry Meets Deep Learning @ ICCV 2019, Oct 2019, Séoul, South Korea
Communication dans un congrès
hal-02087586
v2
|
|
How serious is data leakage in deep learning studies on Alzheimer's disease classification?2019 OHBM Annual meeting - Organization for Human Brain Mapping, Jun 2019, Rome, Italy
Communication dans un congrès
hal-02105133
v2
|
|
Predicting progression to Alzheimer’s disease from clinical and imaging data: a reproducible studyOHBM 2019 - Organization for Human Brain Mapping Annual Meeting 2019, Jun 2019, Rome, Italy
Communication dans un congrès
hal-02142315
v1
|
Target controllability in genetic networks of macrophage activationNetsci 2019, May 2019, Burlington, United States
Communication dans un congrès
hal-02314001
v1
|
|
|
New advances in the Clinica software platform for clinical neuroimaging studiesOHBM 2019 - Annual Meeting on Organization for Human Brain Mapping, Jun 2019, Roma, Italy. ⟨10.1016/j.neuroimage.2011.09.015⟩
Communication dans un congrès
hal-02132147
v2
|
|
A pipeline for the analysis of 18F-FDG PET data on the cortical surface and its evaluation on ADNIAnnual meeting of the Organization for Human Brain Mapping - OHBM 2018, Jun 2018, Singapour, Singapore
Communication dans un congrès
hal-01757646
v1
|
Conciliation of medicine systems disease maps and other molecular interaction networks using logical properties of ontologyData Integration in the Life Sciences 5DILS 2018), Nov 2018, Hannover, Germany
Communication dans un congrès
hal-02301626
v1
|
|
|
FLAIR MR Image Synthesis By Using 3D Fully Convolutional Networks for Multiple SclerosisISMRM-ESMRMB 2018 - Joint Annual Meeting, Jun 2018, Paris, France. pp.1-6
Communication dans un congrès
hal-01723070
v1
|
|
Comparison of DTI Features for the Classification of Alzheimer's Disease: A Reproducible StudyOHBM 2018 - Organization for Human Brain Mapping Annual Meeting, Jun 2018, Singapour, Singapore
Communication dans un congrès
hal-01758206
v3
|
|
Structural, microstructural and metabolic alterations in Primary Progressive Aphasia variantsAnnual meeting of the Organization for Human Brain Mapping - OHBM 2018, Jun 2018, Singapore, Singapore
Communication dans un congrès
hal-01764289
v1
|
|
Three simple ideas for predicting progression to Alzheimer's disease8th International Workshop on Pattern Recognition in Neuroimaging, Jun 2018, Singapour, Singapore
Communication dans un congrès
hal-01891996
v1
|
|
Clinica: an open source software platform for reproducible clinical neuroscience studiesAnnual meeting of the Organization for Human Brain Mapping - OHBM 2018, Jun 2018, Singapore, Singapore
Communication dans un congrès
hal-01760658
v1
|
|
Identification of Driver Nodes in Genetic Networks Regulating Macrophage ActivationConference on Complex Systems - CSS, Sep 2018, Thessaloniki, Greece
Communication dans un congrès
hal-01967797
v1
|
|
Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphismsCVPR 2018 - Computer Vision and Pattern Recognition 2018, Jun 2018, Salt Lake City, United States
Communication dans un congrès
hal-01744538
v3
|
|
Reproducible evaluation of Alzheimer's Disease classification from MRI and PET dataAnnual meeting of the Organization for Human Brain Mapping - OHBM 2018, Jun 2018, Singapour, Singapore
Communication dans un congrès
hal-01761666
v1
|
|
Using diffusion MRI for classification and prediction of Alzheimer's Disease: a reproducible studyAAIC 2018 - Alzheimer's Association International Conference, Jul 2018, Chicago, United States
Communication dans un congrès
hal-01758167
v2
|
Identification of driver nodes in genetic networks regulating macrophage activationInternational School and Conference on Network Science (Netsci) 2018, Jun 2018, Paris, France
Communication dans un congrès
hal-02315609
v1
|
|
|
Integrating ontological representation and reasoning into a disease map: application to Alzheimer's diseaseDMCM 2018 - 3rd Disease Maps Community Meeting, Jun 2018, Paris, France. pp.1-2
Communication dans un congrès
hal-01873474
v1
|
|
Converting Alzheimer's disease map into a heavyweight ontology: a formal network to integrate dataDILS 2018 - 13th International Conference on Data Integration in the Life Sciences, Nov 2018, Hannover, Germany. pp.1-9
Communication dans un congrès
hal-01917742
v1
|
|
NODDI Highlights Promising New Markers In Presymptomatic C9orf72 CarriersOHBM 2018 - Organization for Human Brain Mapping Annual Meeting, Jun 2018, Singapour, Singapore
Communication dans un congrès
hal-01758137
v1
|
|
Learning Myelin Content in Multiple Sclerosis from Multimodal MRI through Adversarial TrainingMICCAI 2018 – 21st International Conference On Medical Image Computing & Computer Assisted Intervention, Sep 2018, Granada, Spain. ⟨10.1007/978-3-030-00931-1_59⟩
Communication dans un congrès
hal-01810822
v1
|
|
Diagnosis of Alzheimer’s Disease Through Identification of Abnormality Patterns in FDG PET Data30th Annual Congress of the European Association of Nuclear Medicine (EANM), Oct 2017, Vienna, Austria. pp.253 - 254, ⟨10.1007/s00259-017-3822-1⟩
Communication dans un congrès
hal-01632509
v1
|
|
Multi-modal analysis of genetically-related subjects using SIFT descriptors in brain MRIWorkshop on Computational Diffusion MRI, CDMRI 2017, MICCAI Workshop, Sep 2017, Quebec, Canada
Communication dans un congrès
hal-01589647
v1
|
|
Prediction of the progression of subcortical brain structures in Alzheimer's disease from baseline6th MICCAI Workshop on Mathematical Foundations of Computational Anatomy, Sep 2017, Quebec City, Canada
Communication dans un congrès
hal-01563587
v2
|
|
Selection of amyloid positive pre-symptomatic subjects using automatic analysis of neuropsychological and MRI data for cost effective inclusion procedures in clinical trialsClinical Trials for Alzheimer's Disease, Nov 2017, Boston, United States. pp.295
Communication dans un congrès
hal-02098434
v2
|
|
Multilevel Modeling with Structured Penalties for Classification from Imaging Genetics data 3rd MICCAI Workshop on Imaging Genetics (MICGen 2017), Sep 2017, Québec City, Canada. pp.230-240
Communication dans un congrès
hal-01578441
v1
|
|
Prediction of amyloidosis from neuropsychological and MRI data for cost effective inclusion of pre-symptomatic subjects in clinical trialsMultimodal Learning for Clinical Decision Support, Sep 2017, Quebec City, Canada
Communication dans un congrès
hal-01578422
v1
|
|
Étude quantitative des anomalies de signal flair de la substance blanche dans les pathologies neurodégénérativesSFNR 2017 - 44ème Congrès de la Société Française de Neuroradiologie, Mar 2017, Paris, France. pp.1, ⟨10.1016/j.neurad.2017.01.011⟩
Communication dans un congrès
hal-01562645
v1
|
|
Individual Analysis of Molecular Brain Imaging Data Through Automatic Identification of Abnormality PatternsComputational Methods for Molecular Imaging - [MICCAI 2017 Satellite Workshop], Sep 2017, Quebec City, Canada
Communication dans un congrès
hal-01567343
v1
|
|
Statistical learning of spatiotemporal patterns from longitudinal manifold-valued networksMedical Image Computing and Computer Assisted Intervention, Sep 2017, Quebec City, Canada
Communication dans un congrès
hal-01540828
v1
|
|
White Matter Fiber Segmentation Using Functional VarifoldsMFCA 2017 - 6th MICCAI workshop on Mathematical Foundations of Computational Anatomy, Sep 2017, Québec, Canada. pp.92-100
Communication dans un congrès
hal-01589649
v1
|
|
Accuracy of MRI classification algorithms in a tertiary memory center clinical routine cohortAAIC 2017 - Alzheimer's Association International Conference, Jul 2017, London, United Kingdom. pp.P772-P774, ⟨10.1016/j.jalz.2017.06.1034⟩
Communication dans un congrès
hal-02192444
v1
|
|
Early Diagnosis of Alzheimer’s Disease Using Subject-Specific Models of FDG-PET DataAAIC 2017 - Alzheimer's Association International Conference, Jul 2017, London, United Kingdom. pp.1-2, ⟨10.1016/j.jalz.2017.06.1618⟩
Communication dans un congrès
hal-01621383
v1
|
|
Yet Another ADNI Machine Learning Paper? Paving The Way Towards Fully-reproducible Research on Classification of Alzheimer's DiseaseMachine Learning in Medical Imaging 2017, Sep 2017, Quebec City, Canada. pp.8
Communication dans un congrès
hal-01578479
v1
|
The INSIGHT cohort: baseline analysis of structural MR imaging in asymptomatic subjects at risk for Alzheimer's diseaseAAIC, Jul 2016, Toronto, Canada. ⟨10.1016/j.jalz.2016.06.612⟩
Communication dans un congrès
hal-01439571
v1
|
|
|
Suspected non-alzheimer disease pathophysiology (SNAP) categorization in the insight cohortAAIC, 2016, Toronto, Canada. pp.P1073 - P1074, ⟨10.1016/j.jalz.2016.06.2246⟩
Communication dans un congrès
hal-01562646
v1
|
|
Mixed-effects model for the spatiotemporal analysis of longitudinal manifold-valued data5th MICCAI Workshop on Mathematical Foundations of Computational Anatomy, Oct 2015, Munich, Germany
Communication dans un congrès
hal-01245905
v1
|
|
Learning spatiotemporal trajectories from manifold-valued longitudinal dataNeural Information Processing Systems, Dec 2015, Montréal, Canada
Communication dans un congrès
hal-01163373
v3
|
Imaging of hippocampal inner structure at 7T: robust in-vivo acquisition protocolAnnual Meeting of the Organization for Human Brain Mapping, OHBM 2015, 2015, Honolulu, United States
Communication dans un congrès
hal-01188843
v1
|
|
|
Multi-template approaches for segmenting the hippocampus: the case of the SACHA softwareOrganization for Human Brain Mapping (OHBM), Jun 2015, Honolulu, United States. pp.5
Communication dans un congrès
hal-01188794
v1
|
Segmentation of hippocampal inner structure using 7T in-vivo MRI: a robust anatomical protocolAnnual Meeting of the Organization for Human Brain Mapping, OHBM 2015, 2015, Honolulu, United States
Communication dans un congrès
hal-01188838
v1
|
|
|
Unified analysis of shape and structural connectivity of neural pathwaysOrganisation for Human Brain Mapping, 2015, Honolulu, United States
Communication dans un congrès
hal-01187461
v1
|
|
A mixed-effects model with time reparametrization for longitudinal univariate manifold-valued dataIPMI - Information Processing in Medical Imaging
Communication dans un congrès
hal-01163213
v1
|
Statistical shape analysis of large datasets using diffeomorphic iterative centroidsHuman Brain Mapping - 2015, Jun 2015, Honolulu, United States
Communication dans un congrès
hal-01212226
v1
|
|
Measuring the thickness of the hippocampal pyramidal layer using in vivo 7T MRIAnnual Meeting of the Organization for Human Brain Mapping, OHBM 2015, 2015, Honolulu, United States
Communication dans un congrès
hal-01188833
v1
|
|
|
Characterization of Incomplete Hippocampal Inversions in a large dataset of young healthy subjectsHuman Brain Mapping - 2015, Jun 2015, Honolulu, United States
Communication dans un congrès
hal-01212219
v1
|
|
Joint Morphometry of Fiber Tracts and Gray Matter structures using Double DiffeomorphismsIPMI - Information Processing in Medical Imaging, Jun 2015, Isle of Skye, United Kingdom. pp.275-287, ⟨10.1007/978-3-319-19992-4_21⟩
Communication dans un congrès
hal-01142628
v1
|
|
A Prototype Representation to Approximate White Matter Bundles with Weighted CurrentsMICCAI 2014 - 17th International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2014, Boston, United States
Communication dans un congrès
hal-01010702
v1
|
Slab registration as a first step towards hippocampus subparts high resolution imaging at 7TISMRM 2014 - Annual Meeting of the International Society for Magnetic Resonance in Medicine, May 2014, Milan, Italy
Communication dans un congrès
hal-01114137
v1
|
|
Genetic Frontotemporal Dementia with TDP-43 Inclusions:Distinct Radiological Phenotypes between Patients with PGRN and C9ORF72 MutationsRSNA, Nov 2014, Chicago, United States
Communication dans un congrès
hal-01439623
v1
|
|
Multimodal neuroimaging study in presymptomatic GRN mutations carriers9th International Conference on Frontotemporal Dementias (ICFTD), Oct 2014, Vancouver, Canada
Communication dans un congrès
hal-01114134
v1
|
|
|
Evaluation of morphometric descriptors of deep brain structures for the automatic classification of patients with Alzheimer’s disease, mild cognitive impairment and elderly controlsMICCAI Workshop, Sep 2014, Cambridge, United States. pp.8
Communication dans un congrès
hal-01099081
v1
|
Incidence and characterization of supratentorial FLAIR hyperintenstities in patients with sporadic and genetic frontotemporal dementiaAAIC 2014 - Alzheimer’s Association International Conference, Jul 2014, Copenhagen, Denmark
Communication dans un congrès
hal-01114135
v1
|
|
Improved accuracy of the diagnosis of early Alzheimer’s disease using combined measures of hippocampal volume and sulcal morphologyAAN 2014 - Annual Meeting of the American Academy of Neurology, Apr 2014, Philadelphia, United States
Communication dans un congrès
hal-01114138
v1
|
|
|
Fast Template-based Shape Analysis using Diffeomorphic Iterative CentroidMIUA 2014 - Medical Image Understanding and Analysis 2014, Jul 2014, Egham, United Kingdom. pp.39-44
Communication dans un congrès
hal-01050590
v1
|
|
Towards joint morphometry of white matter tracts and gray matter surfacesHuman Brain Mapping, 2013, Seattle, United States
Communication dans un congrès
hal-00816138
v1
|
Template Estimation for Large Database: A Diffeomorphic Iterative Centroid Method Using CurrentsGSI 2013 - First International Conference Geometric Science of Information, Aug 2013, Paris, France. pp.103-111, ⟨10.1007/978-3-642-40020-9_10⟩
Communication dans un congrès
istex
hal-00857440
v1
|
|
|
Bayesian Atlas Estimation for the Variability Analysis of Shape ComplexesMICCAI 2013 : Medical Image Computing and Computer Assisted Intervention, Sep 2013, Nagoya, Japan. pp.267-274, ⟨10.1007/978-3-642-40811-3_34⟩
Communication dans un congrès
hal-01188791
v1
|
Automatic segmentation of white matter hyperintensities robust to multicentre acquisition and pathological variabilitySPIE 2012 - Symposium on Medical Imaging, Feb 2012, San Diego, United States. pp.1-9, ⟨10.1117/12.910268⟩
Communication dans un congrès
hal-00817381
v1
|
|
Segmentation of white matter hyperintensities: a comparison of automatic methods on multicentre dataOHBM 2012 - 18th Annual Meeting of the Organization for Human Brain Mapping, Jun 2012, Beijing, China
Communication dans un congrès
hal-00817392
v1
|
|
|
Modelling morphological variability of the hippocampus using manifold learning and large deformationsOHBM 2012 - 18th Annual Meeting of the Organization for Human Brain Mapping, Jun 2012, Pekin, China
Communication dans un congrès
hal-00816100
v1
|
Anatomical Regularization on Statistical Manifolds for the Classification of Patients with Alzheimer's DiseaseMICCAI Workshop on Machine Learning in Medical Imaging, Sep 2011, Toronto, Canada. pp.201-208, ⟨10.1007/978-3-642-24319-6_25⟩
Communication dans un congrès
istex
hal-00712091
v1
|
|
|
T 1 mapping, AIF and Pharmacokinetic Parameter Extraction from Dynamic Contrast Enhancement MRI DataMICCAI Workshop on Multimodal Brain Image Analysis MBIA 2011, 2011, Toronto, Canada. pp.76 - 83, ⟨10.1007/978-3-642-24446-9_10⟩
Communication dans un congrès
hal-01439120
v1
|
Automatic segmentation of age-related white matter changes on flair images: method and multicentre validationISBI 2011 - 8th IEEE International Symposium on Biomedical Imaging: from Nano to Macro, Mar 2011, Chicago, United States. pp.2014 - 2017, ⟨10.1109/ISBI.2011.5872807⟩
Communication dans un congrès
hal-00817386
v1
|
|
|
Spatial and anatomical regularization of SVM for brain image analysisNeural Information Processing Systems NIPS 2010, 2010, Vancouver, Canada
Communication dans un congrès
hal-01439123
v1
|
Automated segmentation of white matter lesions using FLAIR images.OHBM 2010 - 16th International Conference on Functional Mapping of the Human Brain, Jun 2010, Barcelona, Spain
Communication dans un congrès
hal-00817395
v1
|
|
|
Spatially Regularized SVM for the Detection of Brain Areas Associated with Stroke OutcomeMedical Image Computing and Computer-Assisted Intervention, MICCAI 2010, 2010, Beijing, China. pp.316 - 323, ⟨10.1007/978-3-642-15705-9_39⟩
Communication dans un congrès
hal-01439126
v1
|
DISCO: a coherent diffeomorphic framework for brain registration under exhaustive sulcal constraintsMedical Image Computing and Computer-Assisted Intervention - MICCAI 2009, Sep 2009, United Kingdom. pp.730-738
Communication dans un congrès
hal-00534432
v1
|
|
Multi-Scale Diffeomorphic Cortical Registration Under Manifold Sulcal Constraints2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, May 2008, France. pp.1127-1130
Communication dans un congrès
hal-00534433
v1
|
|
Improved segmentation of focal cortical dysplasia lesions on MRI using expansion towards cortical boundaries3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro (ISBI), 2006, Arlington, VA, USA, United States. pp.323-326
Communication dans un congrès
inria-00615584
v1
|
|
Segmentation of Focal Cortical Dysplasia Lesions Using a Feature-Based Level SetProc. Medical Image Computing and Computer Assisted Intervention (MICCAI'05), 2005, Palm Springs (CA), USA, United States. pp.375-382, ⟨10.1007/1156646547⟩
Communication dans un congrès
inria-00616015
v1
|
|
A level set driven by MR features of focal cortical dysplasia for lesion segmentationMedical Image Understanding and Analysis (MIUA), 2005, no address, United States. pp.239-242
Communication dans un congrès
inria-00616016
v1
|
|
|
Integration of fuzzy structural information in deformable modelsInformation Processing and Management of Uncertainty IPMU 2004, 2004, Perugia, Italy
Communication dans un congrès
hal-01930357
v1
|
|
3D nonlinear PET-CT image registration algorithm with constrained Free-Form Deformations3rd IASTED International Conference on Visualization, Imaging, and Image Processing (VIIP 2003), 2003, Benalmadena, Spain
Communication dans un congrès
hal-01930355
v1
|
|
Characterization of approximate plane symmetries for 3D fuzzy objects9th International Conference on Information Processing and Management of Uncertainty IPMU 2002), Jul 2002, Annecy, France. pp.1749-1756
Communication dans un congrès
hal-01930352
v1
|
|
Brain symmetry plane computation in MR images using inertia axes and optimization16th International Conference on Pattern Recognition, Aug 2002, Québec, Canada. ⟨10.1109/ICPR.2002.1044783⟩
Communication dans un congrès
hal-01930349
v1
|
|
Machine Learning for Brain DisordersOlivier Colliot. Springer, 197, 2023, Neuromethods, 978-1-0716-3195-9. ⟨10.1007/978-1-0716-3195-9⟩
Ouvrages
hal-04225627
v1
|
|
Reproducibility in medical image computing: what is it and how is it assessed?Marco Lorenzi and Maria Zuluaga. Trustworthy AI in Medical Imaging, Elsevier, pp.177-204, 2024, MICCAI Book Series, Elsevier, ⟨10.1016/B978-0-44-323761-4.00018-3⟩
Chapitre d'ouvrage
hal-04895884
v1
|
|
Evaluating machine learning models and their diagnostic valueOlivier Colliot. Machine Learning for Brain Disorders, Springer, 2023
Chapitre d'ouvrage
hal-03682454
v5
|
|
Machine learning for Parkinson’s disease and related disordersOlivier Colliot. Machine Learning for Brain Disorders, Springer, 2023, ⟨10.1007/978-1-0716-3195-9_26⟩
Chapitre d'ouvrage
hal-03830073
v2
|
|
Classic machine learning methodsOlivier Colliot. Machine Learning for Brain Disorders, Springer, 2023
Chapitre d'ouvrage
hal-03830094
v4
|
|
A non-technical introduction to machine learningOlivier Colliot. Machine Learning for Brain Disorders, Springer, 2023
Chapitre d'ouvrage
hal-03957125
v3
|
|
Deep learning: basics and convolutional neural networks (CNN)Olivier Colliot. Machine Learning for Brain Disorders, Springer, 2023, ⟨10.1007/978-1-0716-3195-9_3⟩
Chapitre d'ouvrage
hal-03957224
v2
|
|
Reproducibility in machine learning for medical imagingOlivier Colliot. Machine Learning for Brain Disorders, Springer, 2023
Chapitre d'ouvrage
hal-03957240
v2
|
|
Interpretability of Machine Learning Methods Applied to NeuroimagingOlivier Colliot. Machine Learning for Brain Disorders, Springer, 2023, ⟨10.1007/978-1-0716-3195-9_22⟩
Chapitre d'ouvrage
hal-03615163
v2
|
|
Biomarqueurs IRM de la maladie d’Alzheimer : apport du traitement des imagesTillement Jean-Paul; Hauw Jean-Jacques; Papadopoulos Vassilios. Vieillissement et démences : un défi médical, scientifique et socio-économique, Lavoisier, pp.25-37, 2014, Rapports de l’Académie Nationale de Médecine
Chapitre d'ouvrage
hal-01098841
v1
|
|
Diffeomorphic Iterative Centroid Methods for Template Estimation on Large DatasetsFrank Nielsen. Geometric Theory of Information, Chapter 10, Springer, pp.273-299, 2014, ⟨10.1007/978-3-319-05317-2_10⟩
Chapitre d'ouvrage
hal-00939326
v1
|
|
Pseudo-healthy image reconstruction with variational autoencoders for anomaly detection: A benchmark on 3D brain FDG PET2024
Pré-publication, Document de travail
hal-04445378
v1
|
|
Scrolling 2D U-Net for the 3D segmentation of the internal carotid artery2023
Pré-publication, Document de travail
hal-04090342
v1
|
|
Scrolling 2D U-Net for the 3D segmentation of small vessels on 7T magnetic resonance angiography2023
Pré-publication, Document de travail
hal-04090356
v1
|
|
A parsimonious model for mass-univariate vertex-wise analysis2022
Pré-publication, Document de travail
hal-03118366
v2
|
|
Représentation, évaluation et utilisation de relations spatiales pour l'interprétation d'images. Application à la reconnaissance de structures anatomiques en imagerie médicaleInterface homme-machine [cs.HC]. Télécom ParisTech, 2003. Français. ⟨NNT : ⟩
Thèse
tel-00005764
v1
|
Chargement...
Chargement...