- 4
- 4
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
Vincent Guillemot
Biostatistician
73%
Open access
40
Documents
Current affiliations
Researcher identifiers
vguillemot
-
0000-0002-7421-0655
- Google Scholar : https://scholar.google.fr/citations?user=VMpMbg0AAAAJ
Presentation
I am currently a biostatistician in the Hub of Bioinformatics and Biostatistics. Before that, I worked at the Brain and Spine Institute (Paris, France), NeuroSpin (Saclay, France) and in the Ludwig Maximilian University (Munich, Germany).
My fields of expertise include biostatistics, multivariate statistics, data visualization, statistical data integration and machine learning.
My teaching activities range from the introduction to basic concepts in statistics to theoretical aspects in convex optimization.
Je suis actuellement biostatisticien au sein du Hub de bio-informatique et biostatistique. Avant cela, j'ai travaillé à l'Institut du Cerveau (Paris, France), NeuroSpin (Saclay, France) et à l'Université Ludwig Maximilian (Munich, Allemagne).
Mes domaines d'expertise incluent la biostatistique, les statistiques multivariées, la visualisation des données, l'intégration de données statistiques et l'apprentissage automatique.
Mes activités d'enseignement vont de l'introduction aux concepts de base en statistique jusqu'aux aspects théoriques de l'optimisation convexe.
Skills
R programming
Statistics
Data Integration
Publications
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 18
- 17
- 6
- 4
- 4
- 3
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 6
- 5
- 5
- 4
- 7
- 3
- 4
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 4
- 4
- 3
- 4
- 1
- 2
- 3
- 2
- 3
- 2
- 1
- 3
- 4
- 1
- 2
- 1
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 5
- 4
- 3
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
Etude de la Pénalisation GraphNet en Analyse de Données Multi-blocs53èmes Journées de Statistiques, Jun 2022, Lyon, France
Conference papers
pasteur-04131938v1
|
|
|
Introducing group-sparsity and orthogonality constraints in RGCCAJdS2021 : 52èmes Journées de Statistique, Jun 2021, Nice, France
Conference papers
hal-03264640v1
|
|
Sparse Multiple Correspondence Analysis52èmes Journées de Statistique, Société Française de Statistique (SFdS), May 2020, Nice, France. pp.830-835
Conference papers
pasteur-03037346v1
|
|
Network regularization in imaging genetics improves prediction performances and model interpretability on Alzheimers's diseaseISBI 2019 - Proceedings of the IEEE International Symposium on Biomedical Imaging, Apr 2019, Venice, Italy. ⟨10.1109/ISBI.2019.8759593⟩
Conference papers
cea-02016625v1
|
|
Multiblock analysis of omics and imaging data with variable selectionJournées RITS 2015, Mar 2015, Dourdan, France. pp.P28-29 Section imagerie génétique
Conference papers
inserm-01145569v1
|
Multiblock Logistic Regression for High Dimensional DataPLS 2014, May 2014, Paris, France
Conference papers
hal-01103734v1
|
|
Structured variable selection for generalized canonical correlation analysisPLS’14, May 2014, Paris, France
Conference papers
hal-01084048v1
|
|
A multi-block approach in imaging genetics9th International Imaging Genetics Conference, Jan 2013, Irvine, California, United States. pp.Poster 13
Conference papers
hal-00862310v1
|
|
Shrinkage Covariance Estimation Incorporating Prior Biological Knowledge with Applications to High-Dimensional Data58th World Statistics Congress of the International Statistical Institute (ISI'11), Aug 2011, Dublin, Ireland. 16 p
Conference papers
hal-00647792v1
|
|
|
Une variante des tests de sphéricité pour l'adéquation de données transcriptomiques à un graphe de régulations génétiquesJournée Ouverte en Biologie et Mathématiques (JOBIM'09), Jun 2009, Nantes, France. pp.219-220
Conference papers
hal-00421943v1
|
|
Grouping levels of exposure with same observable effects before class prediction in toxicogenomics.IEEE Computer Society, Biotechno08, International Conference on Bioinformatics, and Biomedical Technologies, Digital Library, 2008, France. pp. 164-169, ⟨10.1109/BIOTECHNO.2008.17⟩
Conference papers
hal-00321714v1
|
|
Graph-Constrained Discriminant Analysis of functional genomics dataIEEE International Conference on Bioinformatics and Biomedicine Worshops, Nov 2008, Philadelphia, United States. pp. 207-210, ⟨10.1109/BIBMW.2008.4686237⟩
Conference papers
hal-00346450v1
|
Identification of differentially expressed genes: a comparison between wrapper and filter methodsProceedings of the International Workshop on Machine Learning in Systems Biology, Sep 2007, Evry, France
Conference papers
hal-00257928v1
|
Structured Variable Selection for Regularized Generalized Canonical Correlation Analysis, The Multiple Facets of Partial Least Squares and Related MethodsSpringer Proceedings in Mathematics & Statistics, pp.129-139, 2016, The Multiple Facets of Partial Least Squares and Related Methods, ⟨10.1007/978-3-319-40643-5_10⟩
Book sections
hal-01396614v1
|
|
Dimension Reduction and Regularization Combined with Partial Least Squares in High Dimensional Imaging Genetics StudiesNew Perspectives in Partial Least Squares and Related Methods, Springer, pp.147-158, 2013, Springer Proceedings in Mathematics & Statistics, ⟨10.1007/978-1-4614-8283-3_9⟩
Book sections
hal-01068983v1
|
|
Application de méthodes de classification supervisée et intégration de données hétérogènes pour des données transcriptomiques à haut-débitSciences du Vivant [q-bio]. Université Paris Sud - Paris XI, 2010. Français. ⟨NNT : ⟩
Theses
tel-00481822v1
|
|
Heritability of the language network using resting state fMRI dataCOGNOMICS Conference 2019: Bridging Gaps, Sep 2019, Nijmegen, Netherlands
Conference poster
cea-02289470v1
|
|
Multidimensional Approaches in the Study of Autistic Traits using Behavioral and Imaging DataOrganization of Human Brain Mapping, Jun 2019, Rome, Italy
Conference poster
cea-02289422v1
|