
Publications
Publications
|
Experimental Learning of a Hyperelastic Behavior with a Physics-Augmented Neural NetworkExperimental Mechanics, 2024, ⟨10.1007/s11340-024-01106-5⟩
Article dans une revue
hal-04696392
v1
|
|
Unsupervised learning of history-dependent constitutive material laws with thermodynamically-consistent neural networks in the modified Constitutive Relation Error framework.Computer Methods in Applied Mechanics and Engineering, 2024, 425, pp.116967. ⟨10.1016/j.cma.2024.116967⟩
Article dans une revue
hal-04368755
v1
|
Intégrer les connaissances physiques dans les réseaux de neurones : application à l’apprentissage des lois de comportement matériaux à partir de mesures de déformation par fibres optiquesLa Revue 3E.I, 2022, 109
Article dans une revue
hal-04424259
v1
|
Unsupervised learning of constitutive model with neural networks and sparse identification of internal variables3rd IACM Digital Twins in Engineering Conference (DTE 2025) & 1st ECCOMAS Artificial Intelligence and Computational Methods in Applied Science (AICOMAS 2025), Feb 2025, Paris, France
Communication dans un congrès
hal-04992869
v1
|
|
Use of the modified constitutive relation error to learn constitutive relations21st European Conference on Composite Materials, 2024, Nantes, France
Communication dans un congrès
hal-04654555
v1
|
|
Adaptive modeling and learning of material laws for effective data assimilation16th World Congress on Computational Mechanics, Jul 2024, Vancouver, Canada
Communication dans un congrès
hal-04424741
v1
|
|
|
Training an AI hyperelastic constitutive model with experimental dataPhotomechanics - IDICs, Oct 2024, Clermont - Ferrand, France
Communication dans un congrès
hal-04720898
v1
|
|
Apprentissage non-supervisé de lois de comportement non- linéaires avec réseau de neurones thermodynamiquement consistent par minimisation de l'erreur en relation de comportement modifiée16ème Colloque National en Calcul de Structures (CSMA 2024), CNRS; CSMA; ENS Paris-Saclay; CentraleSupélec, May 2024, Hyères, France
Communication dans un congrès
hal-04822948
v1
|
Physics-Augmented Neural Networks for Constitutive Modeling: Toward an Application for Structural Health MonitoringThe 9th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2024, Jun 2024, Lisbon, France
Communication dans un congrès
hal-04361347
v1
|
|
A modified Constitutive Relation Error (mCRE) framework to learn nonlinear constitutive models from strain measurements with thermodynamics-consistent Neural NetworksXI Conference on Adaptive Modeling and Simulation, Jun 2023, Gothenburg, France
Communication dans un congrès
hal-04205273
v1
|
|
A modified Constitutive Relation Error framework to learn nonlinear constitutive laws using physics-augmented Neural NetworksIACM Mechanistic Machine Learning and Digital Engineering for Computational Science Engineering and Technology., Sep 2023, El Paso, United States
Communication dans un congrès
hal-04205263
v1
|
|
|
Réseaux de neurones informés par la physique pour l’apprentissage de lois de comportementIA POUR LES SCIENCES DE L'INGÉNIERIE, Jun 2022, Online, France
Communication dans un congrès
hal-03929866
v1
|
|
Réseaux de neurones informés par la physique pour l’apprentissage de lois de comportement.25ème Congrès Français de Mécanique 2022, Aug 2022, Nantes, France
Communication dans un congrès
hal-03727610
v1
|
Physics-informed neural networks derived from a mCRE functional for constitutive modellingIUTAM Symposium on Data-driven Mechanics, Oct 2022, Paris, France
Communication dans un congrès
hal-03727613
v1
|
|
|
Physics-informed neural networks derived from a mCRE functional for constitutive modellingArtificial Intelligence and Augmented Engineering, Dec 2022, Palaiseau, France
Communication dans un congrès
hal-03929841
v1
|
Data-based Model Updating, Selection, and Enrichment using the Modified Constitutive Relation Error Concept15th World Congress on Computational Mechanics, Jul 2022, Yokohama, Japan
Communication dans un congrès
hal-04000251
v1
|
|
Scientific machine learning and physics-augmented neural networks for hybrid digital twinsJournée du GDR I-GAIA, 2023, Paris, France
Poster de conférence
hal-04425617
v1
|
|
Physics-augmented neural networks for constitutive modeling: training with the modified Constitutive Relation ErrorMORTech 2023 – 6th International Workshop on Model Reduction Techniques, Nov 2023, Gif-sur-Yvette, France
Poster de conférence
hal-04361330
v2
|
|
Apprentissage non-supervisé de lois de comportement nonlinéaires avec réseau de neurones thermodynamiquement consistent par minimisation de l'erreur en relation de comportement modifiée2024
Pré-publication, Document de travail
(preprint/prepublication)
hal-04361339
v1
|
|
A novel DDDAS architecture combining advanced sensing and simulation technologies for effective real-time structural health monitoring2023
Pré-publication, Document de travail
hal-04425882
v1
|
|
Use of physics-augmented neural networks for unsupervised learning of material constitutive relations - Comparison of the NN-Euclid and NN-mCRE methodsENS Paris-Saclay; Centrale Supélec. 2023
Rapport
hal-04255767
v1
|
Chargement...
Chargement...