Li WANG
16
Documents
Publications
|
Effect of oblique polymer pillars on spreading and elongation of rat mesenchymal stem cellsColloids and Surfaces B: Biointerfaces, 2019, 183, pp.110485. ⟨10.1016/j.colsurfb.2019.110485⟩
Journal articles
hal-02415221v1
|
|
Bayesian 3D X-ray Computed Tomography with a Hierarchical Prior model for Sparsity in Haar Transform domainEntropy, 2018, Special Issue "Probabilistic Methods for Inverse Problems", ⟨10.3390/e20120977⟩
Journal articles
hal-01950706v1
|
|
X-ray Computed Tomography using a sparsity enforcing prior model based on Haar transformation in a Bayesian frameworkFundamenta Informaticae, 2017, 155 (4), pp.449-480. ⟨10.3233/FI-2017-1594⟩
Journal articles
hal-01490523v1
|
|
Comparaison des performances d’algorithmes itératifs bayésiens basés sur trois classes de modèles a priori parcimonieux appliqués à la reconstruction tomographique26eme Colloque GRETSI Traitement du Signal & des Images, GRETSI 2017, Sep 2017, Juans-Les-Pins, France
Conference papers
hal-01569349v1
|
|
Unsupervised sparsity enforcing iterative algorithms for 3D image reconstruction in X-ray computed tomographyThe 2017 International Conference on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Jun 2017, Xi'an, China. pp.359-362
Conference papers
hal-01568325v1
|
|
Model selection in the sparsity context for inverse problems in Bayesian framework37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Jul 2017, Jarinu, Brazil
Conference papers
hal-01568318v1
|
|
Performance comparison of Bayesian iterative algorithms for three classes of sparsity enforcing priors with application in computed tomography2017 IEEE International Conference on Image Processing, Sep 2017, Beijing, China
Conference papers
hal-01568337v1
|
|
Reconstruction 3D en tomographie à rayons X à l'aide d'un modèle a priori hiérarchique utilisant la transformation de Haar26eme Colloque GRETSI Traitement du Signal & des Images, GRETSI 2017, Sep 2017, Juan-Les-Pins, France
Conference papers
hal-01567888v1
|
|
3D X-ray Computed Tomography reconstruction using sparsity enforcing Hierarchical Model based on Haar TransformationThe 2017 International Conference on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Jun 2017, Xi'an, China. pp.295-298
Conference papers
hal-01490554v1
|
|
Bayesian method with sparsity enforcing prior of dual-tree complex wavelet transform coefficients for X-ray CT image reconstruction25th European Signal Processing Conference (EUSIPCO 2017), Aug 2017, Kos island, Greece. ⟨10.23919/eusipco.2017.8081253⟩
Conference papers
hal-01567875v1
|
|
X-ray computed tomography simultaneous image reconstruction and contour detection using a hierarchical markovian modelThe 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2017), Mar 2017, New Orleans, United States. pp.6070-6074, ⟨10.1109/ICASSP.2017.7953322⟩
Conference papers
hal-01490508v1
|
|
A Student-t based sparsity enforcing hierarchical prior for linear inverse problems and its efficient Bayesian computation for 2D and 3D Computed TomographyInternational traveling workshop on interactions between sparse models and technology, Aug 2016, AALBORG, Denmark
Conference papers
hal-01403787v1
|
|
Bayesian X-ray Computed Tomography using a Three-level Hierarchical Prior ModelAIP Conference, Bayesian inference and maximum entropy methods in science and engineering (Maxent 2016), Jul 2016, Gent, Belgium. ⟨10.1063/1.4985361⟩
Conference papers
hal-01403790v1
|
|
Computed tomography reconstruction based on a hierarchical model and variational Bayesian methodIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar 2016, Shanghai, China. pp.883-887, ⟨10.1109/ICASSP.2016.7471802⟩
Conference papers
hal-01403784v1
|
|
Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model34th International Workshop on Bayesian Inference and Maximun Entropy Methods in Science and Engineering (MaxEnt'14), Sep 2014, Amboise, France. pp.556-563, ⟨10.1063/1.4906022⟩
Conference papers
hal-01338706v1
|