Michal Valko
- Institut National de Recherche en Informatique et en Automatique (Inria)
- Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)
- DeepMind [Paris]
- Meta AI Research [Paris]
Présentation
Michal is the Founding Researcher at a stealth startup, tenured researcher at Inria, and a lecturer at MVA at ENS Paris-Saclay. Michal is primarily interested in designing algorithms that would require as little human supervision as possible. He works on methods and settings that are able to deal with minimal feedback, such as deep reinforcement learning, bandit algorithms, self-supervised learning, or self play. Michal has recently worked on representation learning, world models and deep (reinforcement) learning algorithms that have some theoretical underpinning. In the past he has also worked on sequential algorithms with structured decisions where exploiting the structure leads to provably faster learning. Michal is now working on a new generation of large language models (LLMs), in addition to providing algorithmic solutions for their scalable test-time inference, fine-tuning and alignment. He received his PhD in 2011 from the University of Pittsburgh, before getting a tenure at Inria in 2012 and co-creating Google DeepMind Paris with R. Munos. In 2024, he became a Principal Llama Scientist at Meta, building online reinforcement learning stack and research for Llama 3.
Domaines de recherche
Publications
Publications
|
|
The Harder Path: Last Iterate Convergence for Uncoupled Learning in Zero-Sum Games with Bandit FeedbackICML 2025 - 42nd International Conference on Machine Learning, Jul 2025, Vancouver, Canada
Communication dans un congrès
hal-05234074
v1
|
|
|
Demonstration-Regularized RLThe Twelfth International Conference on Learning Representations, May 2024, Vienne, Austria. ⟨10.48550/arXiv.2310.17303⟩
Communication dans un congrès
hal-05155159
v1
|
|
|
Generalized preference optimization: A unified approach to offline alignmentICML 2024 - 41st International Conference on Machine Learning, Jul 2024, Vienna, Austria
Communication dans un congrès
hal-05413273
v1
|
|
|
Unlocking the power of representations in long-term novelty-based explorationICLR 2024 - 12th International Conference on Learning Representations, May 2024, Vienna, Austria
Communication dans un congrès
hal-05413278
v1
|
rlberry - A Reinforcement Learning Library for Research and EducationMachine Learning Conference, Jan 2024, Online, United States
Communication dans un congrès
hal-05437168
v1
|
|
|
|
Human alignment of large language models through online preference optimisationICML 2024 - 41st International Conference on Machine Learning, Jul 2024, Vienna, Austria
Communication dans un congrès
hal-05413272
v1
|
|
|
A general theoretical paradigm to understand learning from human preferencesAISTATS 2024 - 27th International Conference on Artificial Intelligence and Statistics, May 2024, Valencia, Spain
Communication dans un congrès
hal-05413277
v1
|
|
|
Decoding-time realignment of language modelsICML 2024 - 41st International Conference on Machine Learning, Jul 2024, Vienna, Austria
Communication dans un congrès
hal-05413275
v1
|
|
|
Metacognitive capabilities of LLMs: An exploration in mathematical problem solvingNeurIPS 2024 - Annual Conference on Neural Information Processing Systems, Dec 2024, Vancouver, Canada
Communication dans un congrès
hal-05413270
v1
|
|
|
Nash learning from human feedbackICML 2024 - 41st International Conference on Machine Learning, Jul 2024, Vienna, Austria
Communication dans un congrès
hal-05413271
v1
|
|
|
DoMo-AC: Doubly multi-step off-policy actor-critic algorithmICML 2023 - 40th International Conference on Machine Learning, Jul 2023, Honolulu, United States
Communication dans un congrès
hal-05413282
v1
|
|
|
Model-free Posterior Sampling via Learning Rate RandomizationAdvances in Neural Information Processing Systems 36 (NeurIPS 2023), Dec 2023, New Orleans, United States. ⟨10.48550/arXiv.2310.18186⟩
Communication dans un congrès
hal-05155164
v1
|
|
|
Understanding self-predictive learning for reinforcement learningICML 2023 - 40th International Conference on Machine Learning, Jul 2023, Honolulu, United States
Communication dans un congrès
hal-05413281
v1
|
|
|
Quantile credit assignmentInternational Conference on Machine Learning, Jul 2023, Honolulu, United States
Communication dans un congrès
hal-05413308
v1
|
|
|
Curiosity in hindsight: Intrinsic exploration in stochastic environmentsICML 2023 - 40th International Conference on Machine Learning, Jul 2023, Honolulu, United States
Communication dans un congrès
hal-05413279
v1
|
|
|
Regularization and variance-weighted regression achieves minimax optimality in linear MDPs: Theory and practiceICML 2023 - International Conference on Machine Learning, Jul 2023, Honolulu, United States
Communication dans un congrès
hal-05413283
v1
|
|
|
Half-Hop: A graph upsampling approach for slowing down message passingICML 2023 - 40 th International Conference on Machine Learning, Jul 2023, Honolulu, United States
Communication dans un congrès
hal-05413309
v1
|
|
|
VA-learning as a more efficient alternative to Q-learningInternational Conference on Machine Learning, Jul 2023, Honolulu, United States
Communication dans un congrès
hal-05413306
v1
|
|
|
From Dirichlet to Rubin: Optimistic exploration in RL without bonusesICML 2022 - 39th International Conference on Machine Learning, Jul 2022, Baltimore, United States
Communication dans un congrès
hal-05413310
v1
|
|
|
Retrieval-augmented reinforcement learningInternational Conference on Machine Learning, Jul 2022, Baltimore, United States
Communication dans un congrès
hal-05413311
v1
|
|
|
BYOL-Explore: Exploration by bootstrapped predictionNeurIPS 2022 - 36th International Conference on Neural Information Processing Systems, Nov 2022, New Orleans, United States
Communication dans un congrès
hal-05413284
v1
|
|
|
Scaling Gaussian process optimization by evaluating a few unique candidates multiple timesInternational Conference on Machine Learning, Jul 2022, Baltimore, United States
Communication dans un congrès
hal-05413313
v1
|
|
|
Large-scale representation learning on graphs via bootstrappingInternational Conference on Learning Representations, Apr 2022, Virtual, United States
Communication dans un congrès
hal-05413315
v1
|
|
|
Marginalized operators for off-policy reinforcement learningAISTATS 2022 - 25th International Conference on Artifi- cial Intelligence and Statistics, Mar 2022, Virtual, Spain
Communication dans un congrès
hal-05413316
v1
|
|
|
Adaptive multi-goal explorationAISTATS 2022 - 25th International Conference on Artifi- cial Intelligence and Statistic, Mar 2022, Virtual, Spain
Communication dans un congrès
hal-05413285
v1
|
|
|
Kernel-based reinforcement Learning: A finite-time analysisInternational Conference on Machine Learning, Jul 2021, Vienna / Virtual, Austria
Communication dans un congrès
hal-02541790
v2
|
|
|
Drop, Swap, and Generate: A self-supervised approach for generating neural activityNeural Information Processing Systems, Dec 2021, Virtual, United States
Communication dans un congrès
hal-05413317
v1
|
|
|
Fast active learning for pure exploration in reinforcement learningInternational Conference on Machine Learning, Jul 2021, Vienna, Austria
Communication dans un congrès
hal-02906985
v3
|
|
|
Mine Your Own vieW: Self-supervised learning through across-sample predictionICML 2021 - The 38th International Conference on Machine Learning, Jan 2021, Online, United States
Communication dans un congrès
hal-05413288
v1
|
|
|
Unifying gradient estimators for meta-reinforcement learning via off-policy evaluationNeural Information Processing Systems, Dec 2021, Virtual, United States
Communication dans un congrès
hal-05413286
v1
|
|
|
Online A-optimal design and active linear regressionInternational Conference on Machine Learning, Jul 2021, Vienna / Virtual, Austria. ⟨10.48550/arXiv.1906.08509⟩
Communication dans un congrès
hal-03289318
v1
|
|
|
Episodic reinforcement learning in finite MDPs: Minimax lower bounds revisitedAlgorithmic Learning Theory, Mar 2021, Paris / Virtual, France
Communication dans un congrès
hal-03289004
v1
|
|
|
Revisiting Peng's Q(λ) for for modern reinforcement learningInternational Conference on Machine Learning, Jul 2021, Vienna / Virtual, Austria
Communication dans un congrès
hal-03289292
v1
|
|
|
Model-free learning for two-player zero-sum partially observable Markov games with perfect recallNeural Information Processing Systems, Dec 2021, Virtual, United States
Communication dans un congrès
hal-05413318
v1
|
|
|
Broaden your views for self-supervised video learningIEEE/CVF International Conference on Computer Vision, Oct 2021, Virtual, Canada
Communication dans un congrès
hal-05413319
v1
|
|
|
A kernel-based approach to non-stationary reinforcement learning in metric spacesInternational Conference on Artificial Intelligence and Statistics, Apr 2021, San Diego / Virtual, United States
Communication dans un congrès
hal-03289026
v1
|
|
|
Sample complexity bounds for stochastic shortest path with a generative modelAlgorithmic Learning Theory, 2021, Paris, France
Communication dans un congrès
hal-03288988
v1
|
|
|
Taylor expansion of discount factorsInternational Conference on Machine Learning, Jul 2021, Vienna / Virtual, Austria
Communication dans un congrès
hal-03289295
v1
|
|
|
UCB Momentum Q-learning: Correcting the bias without forgettingInternational Conference on Machine Learning, Jul 2021, Vienna / Virtual, Austria
Communication dans un congrès
hal-03289033
v1
|
|
|
Density-based bonuses on learned representations for reward-free exploration in deep reinforcement learningICML 2021 - The 38th International Conference on Machine Learning, Jan 2021, Online, United States
Communication dans un congrès
hal-05413290
v1
|
|
|
Adaptive reward-free explorationAlgorithmic Learning Theory, 2021, Paris, France
Communication dans un congrès
hal-02864574
v1
|
|
|
Gamification of pure exploration for linear banditsICML 2020 - International Conference on Machine Learning, Aug 2020, Vienna / Virtual, Austria
Communication dans un congrès
hal-02884330
v1
|
|
|
Sampling from a k-DPP without looking at all itemsNeural Information Processing Systems, 2020, Montréal, Canada
Communication dans un congrès
hal-03287832
v1
|
|
|
Fixed-confidence guarantees for Bayesian best-arm identificationInternational Conference on Artificial Intelligence and Statistics, 2020, Palermo, Italy
Communication dans un congrès
hal-02330187
v2
|
|
|
No-regret exploration in goal-oriented reinforcement learningInternational Conference on Machine Learning, 2020, Vienna / Virtual, Austria
Communication dans un congrès
hal-03287824
v1
|
|
|
Derivative-free & order-robust optimisationInternational Conference on Artificial Intelligence and Statistics, Aug 2020, Palermo / Virtual, Italy
Communication dans un congrès
hal-03288939
v1
|
|
|
Monte-Carlo tree search as regularized policy optimizationInternational Conference on Machine Learning, 2020, Vienna, Austria
Communication dans un congrès
hal-02950136
v1
|
|
|
Bootstrap Your Own Latent: A new approach to self-supervised learningNeural Information Processing Systems, 2020, Montréal, Canada
Communication dans un congrès
hal-02869787
v2
|
|
|
Near-linear time Gaussian process optimization with adaptive batching and resparsificationInternational Conference on Machine Learning, 2020, Vienna, Austria
Communication dans un congrès
hal-02950066
v1
|
|
|
Covariance-adapting algorithm for semi-bandits with application to sparse outcomesConference on Learning Theory, 2020, Graz, Austria
Communication dans un congrès
hal-02876102
v1
|
|
|
Taylor expansion policy optimizationInternational Conference on Machine Learning, 2020, Vienna, Austria
Communication dans un congrès
hal-02509561
v1
|
|
|
Adaptive multi-fidelity optimization with fast learning ratesInternational Conference on Artificial Intelligence and Statistics, 2020, Palermo, Italy
Communication dans un congrès
hal-03288879
v1
|
|
|
Statistical efficiency of Thompson sampling for combinatorial semi-banditsNeural Information Processing Systems Conference, Dec 2020, Virtual, France
Communication dans un congrès
hal-03288983
v1
|
|
|
Planning in Markov Decision Processes with Gap-Dependent Sample ComplexityNeural Information Processing Systems, 2020, Vancouver, France
Communication dans un congrès
hal-02863486
v2
|
|
|
A single algorithm for both restless and rested rotting banditsInternational Conference on Artificial Intelligence and Statistics, Aug 2020, Palermo / Virtual, Italy
Communication dans un congrès
hal-03287835
v1
|
|
|
Stochastic bandits with arm-dependent delaysInternational Conference on Machine Learning, 2020, Vienna, Austria
Communication dans un congrès
hal-02950116
v1
|
|
|
Reward-free exploration beyond finite-horizonICML 2020 Workshop on Theoretical Foundations of Reinforcement Learning, 2020, Vienna, France
Communication dans un congrès
hal-03288970
v1
|
|
|
Budgeted online influence maximizationInternational Conference on Machine Learning, 2020, Vienna, Austria
Communication dans un congrès
hal-02904278
v1
|
|
|
Improved sample complexity for incremental autonomous exploration in MDPsNeural Information Processing Systems, 2020, Montréal, Canada
Communication dans un congrès
hal-03287829
v1
|
|
|
BYOL works even without batch statisticsNeurIPS 2020 Workshop: Self-Supervised Learning - Theory and Practice, Jan 2020, Online, United States
Communication dans un congrès
hal-05413292
v1
|
|
|
Improved sleeping bandits with stochastic action sets and adversarial rewardsICML 2020 - International Conference on Machine Learning, Jul 2020, Vienna, Austria
Communication dans un congrès
hal-02950106
v1
|
|
|
Active multiple matrix completion with adaptive confidence setsInternational Conference on Artificial Intelligence and Statistics, 2019, Okinawa, Japan
Communication dans un congrès
hal-02387468
v1
|
|
|
Gaussian process optimization with adaptive sketching: Scalable and no regretConference on Learning Theory, 2019, Phoenix, United States
Communication dans un congrès
hal-02144311
v1
|
|
|
Exact sampling of determinantal point processes with sublinear time preprocessingNeural Information Processing Systems, 2019, Vancouver, Canada
Communication dans un congrès
hal-02387524
v1
|
|
|
Exploiting structure of uncertainty for efficient matroid semi-banditsInternational Conference on Machine Learning, 2019, Long Beach, United States
Communication dans un congrès
hal-02387478
v1
|
|
|
Finding the bandit in a graph: Sequential search-and-stop22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019), Apr 2019, Okinawa, Japan
Communication dans un congrès
hal-02387465
v1
|
|
|
A simple parameter-free and adaptive approach to optimization under a minimal local smoothness assumptionAlgorithmic Learning Theory, 2019, Chicago, United States
Communication dans un congrès
hal-01885368
v2
|
|
|
On two ways to use determinantal point processes for Monte Carlo integration -- Long versionNeurIPS 2019 - Thirty-third Conference on Neural Information Processing Systems, Jun 2019, Vancouver, Canada
Communication dans un congrès
hal-02277739
v1
|
|
|
A simple dynamic bandit algorithm for hyper-parameter tuningWorkshop on Automated Machine Learning at International Conference on Machine Learning, AutoML@ICML 2019 - 6th ICML Workshop on Automated Machine Learning, Jun 2019, Long Beach, United States
Communication dans un congrès
hal-02145200
v1
|
|
|
Rotting bandits are not harder than stochastic onesInternational Conference on Artificial Intelligence and Statistics, 2019, Naha, Japan
Communication dans un congrès
hal-01936894
v2
|
|
|
General parallel optimization without a metricAlgorithmic Learning Theory, 2019, Chicago, United States
Communication dans un congrès
hal-02047225
v2
|
Optimizing human learning workshop eliciting adaptive sequences for learning (WeASeL)Machine Learning Conference, Jan 2019, Online, United States
Communication dans un congrès
hal-05437169
v1
|
|
|
|
Les processus ponctuels déterminantaux en apprentissage automatiqueGRETSI 2019 - XXVIIe Colloque sur le Traitement du Signal et des Images, Jan 2019, Online, France
Communication dans un congrès
hal-05413294
v1
|
|
|
Multiagent evaluation under incomplete informationNeurIPS 2020 - 33rd Conference on Neural Information Processing Systems, Dec 2019, Vancouver, Canada
Communication dans un congrès
hal-05413293
v1
|
|
|
Planning in entropy-regularized Markov decision processes and gamesNeural Information Processing Systems, 2019, Vancouver, Canada
Communication dans un congrès
hal-02387515
v1
|
|
|
Scale-free adaptive planning for deterministic dynamics & discounted rewardsInternational Conference on Machine Learning, 2019, Long Beach, United States
Communication dans un congrès
hal-02387484
v1
|
|
|
Optimistic optimization of a BrownianNeurIPS 2018 - Thirty-second Conference on Neural Information Processing Systems, Dec 2018, Montréal, Canada
Communication dans un congrès
hal-01906601
v2
|
|
|
Adaptive black-box optimization got easier: HCT only needs local smoothnessEuropean Workshop on Reinforcement Learning, Oct 2018, Lille, France
Communication dans un congrès
hal-01874637
v1
|
|
|
Improved large-scale graph learning through ridge spectral sparsificationInternational Conference on Machine Learning, Jul 2018, Stockholm, Sweden
Communication dans un congrès
hal-01810980
v1
|
|
|
Best of both worlds: Stochastic & adversarial best-arm identificationConference on Learning Theory, 2018, Stockholm, Sweden
Communication dans un congrès
hal-01808948
v6
|
|
|
Compressing the Input for CNNs with the First-Order Scattering TransformECCV 2018 - European Conference on Computer Vision, Sep 2018, Munich, Germany
Communication dans un congrès
hal-01850921
v1
|
|
|
Second-Order Kernel Online Convex Optimization with Adaptive SketchingInternational Conference on Machine Learning, 2017, Sydney, Australia
Communication dans un congrès
hal-01537799
v1
|
|
|
Online influence maximization under independent cascade model with semi-bandit feedbackNeural Information Processing Systems, Dec 2017, Long Beach, United States. pp.1-24
Communication dans un congrès
hal-01643976
v1
|
|
|
Efficient second-order online kernel learning with adaptive embeddingNeural Information Processing Systems, 2017, Long Beach, United States
Communication dans un congrès
hal-01643961
v1
|
|
|
Zonotope hit-and-run for efficient sampling from projection DPPsInternational Conference on Machine Learning, 2017, Sydney, Australia
Communication dans un congrès
hal-01526577
v2
|
|
|
Distributed adaptive sampling for kernel matrix approximationInternational Conference on Artificial Intelligence and Statistics, 2017, Fort Lauderdale, United States
Communication dans un congrès
hal-01482760
v1
|
|
|
Trading off rewards and errors in multi-armed banditsInternational Conference on Artificial Intelligence and Statistics, 2017, Fort Lauderdale, United States
Communication dans un congrès
hal-01482765
v1
|
|
|
Online learning with noisy side observationsInternational Conference on Artificial Intelligence and Statistics, May 2016, Seville, Spain
Communication dans un congrès
hal-01303377
v1
|
|
|
Blazing the trails before beating the path: Sample-efficient Monte-Carlo planningNeural Information Processing Systems, Dec 2016, Barcelona, Spain
Communication dans un congrès
hal-01389107
v3
|
|
|
Pliable rejection samplingInternational Conference on Machine Learning, Jun 2016, New York City, United States
Communication dans un congrès
hal-01322168
v1
|
|
|
Analysis of Nyström method with sequential ridge leverage score samplingUncertainty in Artificial Intelligence, Jun 2016, New York City, United States
Communication dans un congrès
hal-01343674
v1
|
|
|
Rewards and errors in multi-arm bandits for interactive educationChallenges in Machine Learning: Gaming and Education workshop at Neural Information Processing Systems, 2016, Barcelona, Spain
Communication dans un congrès
hal-01482764
v1
|
|
|
Revealing graph bandits for maximizing local influenceInternational Conference on Artificial Intelligence and Statistics, May 2016, Seville, Spain
Communication dans un congrès
hal-01304020
v3
|
|
|
Pack only the essentials: Adaptive dictionary learning for kernel ridge regressionAdaptive and Scalable Nonparametric Methods in Machine Learning at Neural Information Processing Systems, 2016, Barcelona, Spain
Communication dans un congrès
hal-01482756
v1
|
|
|
Online learning with Erdős-Rényi side-observation graphsUncertainty in Artificial Intelligence, Jun 2016, New York City, United States
Communication dans un congrès
hal-01320588
v1
|
|
|
Cheap BanditsInternational Conference on Machine Learning, 2015, Lille, France
Communication dans un congrès
hal-01153540
v1
|
|
|
Large-scale semi-supervised learning with online spectral graph sparsificationResource-Efficient Machine Learning workshop at International Conference on Machine Learning, Jul 2015, Lille, France
Communication dans un congrès
hal-01544929
v1
|
|
|
Black-box optimization of noisy functions with unknown smoothnessNeural Information Processing Systems, 2015, Montréal, Canada
Communication dans un congrès
hal-01222915
v4
|
|
|
Maximum Entropy Semi-Supervised Inverse Reinforcement LearningInternational Joint Conference on Artificial Intelligence, Jul 2015, Bueons Aires, Argentina
Communication dans un congrès
hal-01146187
v1
|
|
|
Simple regret for infinitely many armed banditsInternational Conference on Machine Learning, Jul 2015, Lille, France
Communication dans un congrès
hal-01153538
v1
|
|
|
Bandits attack function optimizationIEEE Congress on Evolutionary Computation, Jul 2014, Beijing, China
Communication dans un congrès
hal-00978637
v1
|
|
|
Online combinatorial optimization with stochastic decision sets and adversarial lossesNeural Information Processing Systems, Dec 2014, Montréal, Canada
Communication dans un congrès
hal-01079355
v2
|
|
|
Spectral Thompson SamplingAAAI Conference on Artificial Intelligence, Jul 2014, Québec City, Canada
Communication dans un congrès
hal-00981575
v2
|
|
|
MESSI: Maximum Entropy Semi-Supervised Inverse Reinforcement LearningNIPS Workshop on Novel Trends and Applications in Reinforcement Learning, 2014, Montreal, Canada
Communication dans un congrès
hal-01177446
v1
|
|
|
Efficient learning by implicit exploration in bandit problems with side observationsNeural Information Processing Systems, Dec 2014, Montréal, Canada
Communication dans un congrès
hal-01079351
v2
|
|
|
Spectral Bandits for Smooth Graph Functions with Applications in Recommender SystemsAAAI Workshop on Sequential Decision-Making with Big Data, Jul 2014, Québec City, Canada
Communication dans un congrès
hal-01045036
v1
|
|
|
Extreme banditsNeural Information Processing Systems, Dec 2014, Montréal, Canada
Communication dans un congrès
hal-01079354
v2
|
|
|
Spectral Bandits for Smooth Graph FunctionsInternational Conference on Machine Learning, May 2014, Beijing, China
Communication dans un congrès
hal-00986818
v3
|
|
|
Learning from a Single Labeled Face and a Stream of Unlabeled Data10th IEEE International Conference on Automatic Face and Gesture Recognition, Apr 2013, Shanghai, China
Communication dans un congrès
hal-00749197
v2
|
|
|
Finite-Time Analysis of Kernelised Contextual BanditsUncertainty in Artificial Intelligence, Jul 2013, Bellevue, United States
Communication dans un congrès
hal-00826946
v1
|
|
|
Stochastic Simultaneous Optimistic OptimizationInternational Conference on Machine Learning, Jun 2013, Atlanta, United States
Communication dans un congrès
hal-00789606
v2
|
|
|
Semi-Supervised Apprenticeship LearningThe 10th European Workshop on Reinforcement Learning (EWRL 2012), Jun 2012, Edinburgh, United Kingdom. pp.131-141
Communication dans un congrès
hal-00747921
v2
|
|
|
Conditional Anomaly Detection Using Soft Harmonic Functions: An Application to Clinical AlertingThe 28th International Conference on Machine Learning Workshop on Machine Learning for Global Challenges, Jun 2011, Seattle, United States
Communication dans un congrès
hal-00642313
v1
|
|
|
Conditional Anomaly Detection with Soft Harmonic FunctionsProceedings of the 2011 IEEE International Conference on Data Mining, Dec 2011, Vancouver, Canada
Communication dans un congrès
hal-00641081
v1
|
|
|
Feature importance analysis for patient management decisions13th International Congress on Medical Informatics MEDINFO 2010, Sep 2010, Cape Town, South Africa. pp.861-865, ⟨10.3233/978-1-60750-588-4-861⟩
Communication dans un congrès
hal-00643123
v1
|
|
|
Semi-Supervised Learning with Max-Margin Graph CutsInternational Conference on Artificial Intelligence and Statistics, May 2010, Chia Laguna, Sardinia, Italy
Communication dans un congrès
hal-00642891
v1
|
|
|
Online Semi-Supervised Learning on Quantized GraphsUncertainty in Artificial Intelligence, Jun 2010, Catalina Island, United States
Communication dans un congrès
hal-00642361
v1
|
|
|
Online Semi-Supervised Perception: Real-Time Learning without Explicit Feedback4th IEEE Online Learning for Computer Vision Workshop, Jun 2010, San Francisco, United States. ⟨10.1109/CVPRW.2010.5543877⟩
Communication dans un congrès
hal-00642999
v1
|
|
|
Learning predictive models for combinations of heterogeneous proteomic data sourcesAMIA Summit on Translational Bioinformatics, Mar 2008, San Francisco, United States
Communication dans un congrès
hal-00643349
v1
|
|
|
Conditional anomaly detection methods for patient-management alert systemsWorkshop on Machine Learning in Health Care Applications in The 25th International Conference on Machine Learning, Jul 2008, Helsinki, Finland
Communication dans un congrès
hal-00643221
v1
|
|
|
Distance Metric Learning for Conditional Anomaly DetectionTwenty-First International Florida Artificial Intelligence Research Society Conference, May 2008, Coconut Grove, Florida, United States
Communication dans un congrès
hal-00643244
v1
|
|
|
Evidence-based Anomaly Detection in Clinical DomainsAnnual American Medical Informatics Association Symposium, 2007, Chicago, United States. pp.319--324
Communication dans un congrès
hal-00643401
v1
|
|
|
A Comparison of Chief Complaints and Emergency Department Reports for Identifying Patients with Acute Lower Respiratory SyndromeInternational Society for Disease Surveillance, Oct 2006, Baltimore, United States
Communication dans un congrès
hal-00643495
v1
|
|
|
Evolutionary Feature Selection for Spiking Neural Network Pattern ClassifiersProceedings of 2005 Portuguese Conference on Artificial Intelligence, Dec 2005, Covilha, Portugal. pp.181-187, ⟨10.1109/EPIA.2005.341291⟩
Communication dans un congrès
hal-00643498
v1
|
|
|
Game plan: What AI can do for football, and what football can do for AIJournal of Artificial Intelligence Research, 2021, 71, pp.41-88. ⟨10.1613/jair.1.12505⟩
Article dans une revue
hal-05413287
v1
|
|
|
Fast sampling from beta-ensemblesStatistics and Computing, 2021, 31 (7), ⟨10.1007/s11222-020-09984-0⟩
Article dans une revue
hal-02697647
v1
|
|
|
Spectral banditsJournal of Machine Learning Research, 2020
Article dans une revue
hal-03084249
v1
|
|
|
DPPy: Sampling Determinantal Point Processes with PythonJournal of Machine Learning Research, 2019
Article dans une revue
hal-01879424
v1
|
|
|
Bayesian Policy Gradient and Actor-Critic AlgorithmsJournal of Machine Learning Research, 2016, 17 (66), pp.1-53
Article dans une revue
hal-00776608
v2
|
|
|
Outlier detection for patient monitoring and alertingJournal of Biomedical Informatics, 2013, 46, pp.47-55. ⟨10.1016/j.jbi.2012.08.004⟩
Article dans une revue
hal-00742097
v1
|
|
|
Identification of microbial and proteomic biomarkers in early childhood cariesInternational Journal of Dentistry, 2011, 2011, pp.196721. ⟨10.1155/2011/196721⟩
Article dans une revue
hal-00642074
v1
|
|
|
Conditional Outlier Detection for Clinical AlertingAMIA .. Annual Symposium proceedings [electronic resource] / AMIA Symposium. AMIA Symposium., 2010, 2010, pp.286-90
Article dans une revue
hal-00642993
v1
|
|
|
Bandits on graphs and structuresMachine Learning [stat.ML]. École normale supérieure de Cachan - ENS Cachan, 2016
HDR
tel-01359757
v1
|
|
|
Adaptive Graph-Based Algorithms for Conditional Anomaly Detection and Semi-Supervised LearningOther Statistics [stat.ML]. University of Pittsburgh, 2011. English. ⟨NNT : ⟩
Thèse
tel-00643508
v1
|
|
|
Feature Selection and Dimensionality Reduction in Genomics and ProteomicsWerner Dubitzky, Martin Granzow and Daniel Berrar. Fundamentals of Data Mining in Genomics and Proteomics, Springer, pp.149-172, 2006, ⟨10.1007/978-0-387-47509-7⟩
Chapitre d'ouvrage
hal-00643496
v1
|
|
|
Evolving Neural Networks for Statistical Decision TheoryMachine Learning [stat.ML]. 2005
Mémoire d'étudiant
hal-00646451
v1
|