
Riccardo Pengo
Présentation
Affiliation
Je suis chercheur « tenure track » (RTT) au sein du Laboratoire de Mathématiques, Informatique, Physique et Sciences de la Terre de l'Université de Messine (Italy).
Carriére academique
- 2023-24: Postdoc, Leibniz University, Hannover (Allemagne). Encadré par Ziyang Gao.
- 2022-23: Postdoc, Max Planck Institute for Mathematics, Bonn (Allemagne). Encadré par Pieter Moree.
- 2020-22: MILYON Postdoc, École normale supérieure de Lyon (France). Encadré par François Brunault.
- 2017-20: Doctorat en mathématiques, Université de Copenhague (Danemark). Thése dirigée par Ian Kiming et Fabien Pazuki.
- 2015-17: ALGANT Master, Université de Milan (Italie) et Université de Leyde (Pays Bas). Memoire de M2 dirigé par Peter Bruin.
- 2012-15: License en mathématiques, Université de Milan (Italie).
Intérêts de recherche
Mes domaines de recherche sont la théorie des nombres et la géométrie arithmétique. Plus précisément, le fil conducteur de mes travaux est la théorie des hauteurs et ses relations aux valeurs spéciales des fonctions L, avec une attention particulière aux mesures de Mahler. La présence de cette dernière dans les domaines le plus différentes m'amène naturellement à étendre mes intérêts vers de directions apparemment très distantes, dont par exemple la théorie des représentations galoisiennes, la théorie d'Iwasawa pour les graphes, ou bien les hauteurs motiviques, la géométrie d'Arakelov et la théorie des intersections anomales. Néanmoins, mes travaux dans ces domaines sont tous motivés par l'intérêt de comprendre plus en profondeur la nature des mesures de Mahler, et des hauteurs liées, en tant qu'invariants arithmétiques et périodes.
Domaines de recherche
Compétences
Publications
Publications
|
On the Northcott property for special values of L-functionsRevista Matemática Iberoamericana, 2024, 40 (1), pp.1-42. ⟨10.4171/rmi/1454⟩
Article dans une revue
hal-03035215
v3
|
|
Limits of Mahler measures in multiple variablesAnnales de l'Institut Fourier, 2024, 74 (4), pp.1407-1450. ⟨10.5802/aif.3611⟩
Article dans une revue
hal-03615999
v2
|
|
Entanglement in the family of division fields of elliptic curves with complex multiplicationPacific Journal of Mathematics, In press, 317 (1), pp.21-66. ⟨10.2140/pjm.2022.317.21⟩
Article dans une revue
hal-02991146
v2
|
|
How big is the image of the Galois representations attached to CM elliptic curves?18th Conference on Arithmetic, Geometry, Cryptography, and Coding Theory, May 2021, CIRM, Luminy, Marseille, France. ⟨10.1090/conm/779/15670⟩
Communication dans un congrès
hal-03524050
v1
|
|
On Diophantine properties for values of Dedekind zeta functions2025
Pré-publication, Document de travail
hal-04973456
v1
|
|
Irreducibility criteria for the preimages of a transverse variety under endomorphisms of products of elliptic curves2023
Pré-publication, Document de travail
hal-04266994
v1
|
|
Spanning trees in $\mathbb{Z}$-covers of a finite graph and Mahler measures2023
Pré-publication, Document de travail
hal-04257416
v1
|
|
Mahler's measure and elliptic curves with potential complex multiplication2020
Pré-publication, Document de travail
hal-02991139
v1
|
|
Mahler measures, special values of L-functions and complex multiplicationNumber Theory [math.NT]. København Universiteit, 2020. English. ⟨NNT : ⟩
Thèse
tel-03037598
v2
|