
Sylvain Chabanet
Doctorant au sein de laboratoire CRAN-UMR 7039, Université de Lorraine. La thèse est encadrée par Pr Hind Bril El-Haouzi et co-encadrée par MdC Philippe Thomas. Elle est fiancée pour moitié par le projet ANR Lor-IA et pour moitié par la région Grand-est.
92%
Libre accès
12
Documents
Identifiants chercheurs
Présentation
Publications
Publications
|
An object-oriented architecture to couple simulators and their machine learning surrogates models in the context of digital shadows22nd IFAC World Congress, IFAC 2023, Jul 2023, Yokohama, Japan. ⟨10.1016/j.ifacol.2023.10.1051⟩
Communication dans un congrès
hal-04201293
v1
|
|
CoreSelect: a new approach to select landmarks for dissimilarity space embedding15th International Joint Conference on Computational Intelligence, IJCCI 2023, International Conference on Neural Computation Theory and Applications, NCTA 2023, Nov 2023, Rome, Italy
Communication dans un congrès
hal-04312913
v1
|
|
A comparison of wood log dissimilarities to predict sawmill output with k-Nearest Neighbor algorithms4th International Conference on Advances in Signal Processing and Artificial Intelligence, ASPAI' 2022, Oct 2022, Corfu, Greece
Communication dans un congrès
hal-04061108
v1
|
|
Toward a sawmill digital shadow based on coupled simulation and supervised learning models12th International Workshop on Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future, SOHOMA’22, Sep 2022, Bucharest, Romania
Communication dans un congrès
hal-03835261
v1
|
|
Toward a self-adaptive digital twin based active learning method: an application to the lumber industry14th IFAC Workshop on Intelligent Manufacturins Systems, IMS 2022, Mar 2022, Tel Aviv, Israel
Communication dans un congrès
hal-03627198
v1
|
|
A kNN approach based on ICP metrics for 3D scans matching: an application to the sawing process17th IFAC Symposium on Information Control Problems in Manufacturing, INCOM 2021, Jun 2021, Budapest (virtual), Hungary
Communication dans un congrès
hal-03269333
v1
|
|
Dissimilarity to class medoids as features for 3D point cloud classificationIFIP International Conference on Advances in Production Management Systems (APMS), Sep 2021, Nantes, France. pp.573-581, ⟨10.1007/978-3-030-85906-0_62⟩
Communication dans un congrès
hal-03334543
v1
|
|
Medoid-based MLP: an application to wood sawing simulator metamodeling13th International Conference on Neural Computation Theory and Applications, NCTA 2021, Oct 2021, Online streaming, Portugal
Communication dans un congrès
hal-03404548
v1
|
|
Contributions aux ombres et jumeaux numériques dans l’industrie : proposition d’une stratégie de couplage entre modèles de simulation et d’apprentissage automatique appliquée aux scieriesAutomatique / Robotique. Université de Lorraine, 2023. Français. ⟨NNT : 2023LORR0131⟩
Thèse
tel-04257342
v1
|
MLP based on dissimilarity features: An application to wood sawing simulator metamodelingSN Computer Science, 2023, 4 (4), pp.408. ⟨10.1007/s42979-023-01852-8⟩
Article dans une revue
hal-04323554
v1
|
|
|
Toward digital twins for sawmill production planning and control: Benefits, opportunities, and challengesInternational Journal of Production Research, 2023, 61 (7), pp.2190-2213. ⟨10.1080/00207543.2022.2068086⟩
Article dans une revue
hal-03627182
v2
|
|
Coupling digital simulation and machine learning metamodel through an active learning approach in Industry4.0 contextComputers in Industry, 2021, 133, pp.103529. ⟨10.1016/j.compind.2021.103529⟩
Article dans une revue
hal-03325460
v1
|
Chargement...
Chargement...